One reported function of the tumor suppressor p19(Arf) is to stabilize p53, providing a critical checkpoint in the response to oncogenic insults. Acute loss of Pten leads to an increase in the abundance of p19(Arf), p53, and p21 proteins as part of a fail-safe senescence response. Here, we report that loss of p19(Arf) in prostate epithelium does not accelerate-but rather partially inhibits-the prostate cancer phenotype of Pten-deficient mice. Moreover, cellular senescence and a further decrease in the number of pre-neoplastic glands were observed in prostates of the Pten-p19(Arf) double-mutant mice. In both prostate epithelium and primary mouse embryo fibroblasts (MEFs), the increase in p53 protein abundance found upon loss of Pten was unaffected by the simultaneous loss of p19(Arf). However, in contrast to that in the prostate epithelium, p19(Arf) deficiency in MEFs lacking Pten abolished cell senescence and promoted hyperproliferation and transformation despite the unabated increase in p53 abundance. Consistent with the effect of p19(Arf) loss in Pten-deficient mouse prostate, we found that in human prostate cancers, loss of PTEN was not associated with loss of p14(ARF) (the human equivalent of mouse p19(Arf)). Collectively, these data reveal differential consequences of p19(Arf) inactivation in prostate cancer and MEFs upon Pten loss that are independent of the p53 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928478 | PMC |
http://dx.doi.org/10.1126/scisignal.2000053 | DOI Listing |
Int J Mol Sci
January 2025
Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland.
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in , , and/or (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising.
View Article and Find Full Text PDFInt J Oncol
February 2025
Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands.
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic.
Background: Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT.
Methods: The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated.
Int J Mol Sci
December 2024
Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
Substantial loss of cardiomyocytes during heart attacks and onset of other cardiovascular diseases is a major cause of mortality. Preservation of cardiomyocytes during cardiac injury would be the most effective strategy to manage these diseases in clinic. However, there is no effective treatment strategy that is able to prevent cardiomyocyte loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!