Activating epidermal growth factor receptor (EGFR) mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We show that the Src family kinases (SFK) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR- and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression, and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples showed frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770839 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-09-0347 | DOI Listing |
Int J Dermatol
December 2024
HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary.
Background: The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem.
Objective: Here, we mine large-scale MM proteogenomic data to identify druggable targets and forecast treatment efficacy and resistance.
Thorac Cancer
December 2024
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China.
Background: Esophageal squamous cell carcinoma (ESCC) is a lethal malignancy, and the molecular underpinnings of its aggressive behavior are not fully understood. FYN proto-oncogene, Src family tyrosine kinase (FYN) has been linked to cancer progression, yet its role in ESCC remains elusive. This study investigated the influence of FYN on ESCC malignancy.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
Under normal physiological conditions, Fyn, a nonreceptor tyrosine kinase, is involved in signal transduction pathways in the nervous system and in the formation and activation of T lymphocytes. Fyn is a member of the Src family of kinases (SFKs) and plays a role in cell morphogenic transformation, motility, proliferation, and death, which in turn influences the development and progression of various cancer types. SFKs are overexpressed or hyperactive in tumours, and they are engaged in several signalling pathways that lead to tumour development.
View Article and Find Full Text PDFEur J Immunol
December 2024
Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Mast cell (MC)-driven allergic diseases are constantly expanding and require the development of novel pharmacological MC stabilizers. Allergen/antigen (Ag)-triggered activation via crosslinking of the high-affinity receptor for IgE (FcεRI) is fundamentally regulated by SRC family kinases, for example, LYN and FYN, exhibiting positive and negative functions. We report that KIRA6, an inhibitor for the endoplasmic reticulum stress sensor IRE1α, suppresses IgE-mediated MC activation by inhibiting both LYN and FYN.
View Article and Find Full Text PDFFront Cell Neurosci
November 2024
Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Fyn is a cytoplasmic tyrosine kinase (TK) that is a nonreceptor and a member of the Src family of kinases (SFKs). It is involved in several transduction pathways in the central nervous system (CNS), such as oligodendrocyte development, myelination, axon guidance, and synaptic transmission. Owing to its wide range of activities in the molecular signaling pathways that underpin both neuropathologic and neurodevelopmental events, Fyn has remained of great interest for more than a century.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!