Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
How to correctly and efficiently determine small molecules' biological function is a challenge and has a positive effect on further metabonomics analysis. Here, we introduce a computational approach to address this problem. The new approach is based on AdaBoost method and featured by function group composition to the metabolic pathway analysis, which can fast and automatically map the small chemical molecules back to the possible metabolic pathway that they belong to. As a result, jackknife cross validation test and independent set test on the model reached 73.7% and 73.8%, respectively. It can be concluded that the current approach is very promising for mapping some unknown molecules' possible metabolic pathway. An online predictor developed by this research is available at http://chemdata.shu.edu.cn/pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/092986609788923374 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!