Influence of quaternary conformation on the biological activities of the Asp49-phospholipases A2s from snake venoms.

Protein Pept Lett

Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu/SP, Brasil.

Published: October 2009

One of the main components of snake venoms are the Asp49-phospholipases A(2), also known as svPLA(2)s. The study of these toxins is a matter of great scientific interest due to their wide variety of biological effects. In this work we present strong evidences found in literature and other aspects which strengthen the importance of quaternary assembly for understanding the activities and molecular evolution of svPLA(2)s.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986609788923301DOI Listing

Publication Analysis

Top Keywords

snake venoms
8
influence quaternary
4
quaternary conformation
4
conformation biological
4
biological activities
4
activities asp49-phospholipases
4
asp49-phospholipases a2s
4
a2s snake
4
venoms main
4
main components
4

Similar Publications

King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.

View Article and Find Full Text PDF

Jararhagin-C (JarC) is a protein from the venom of consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%.

View Article and Find Full Text PDF

The onset, progression, and severity of pain following rattlesnake envenomation are highly variable between patients. Pain can be severe and persistent, seemingly refractory to opioid analgesics. The ability of antivenom to directly relieve pain has not been well studied.

View Article and Find Full Text PDF

This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake , focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve.

View Article and Find Full Text PDF

The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!