A small molecule that disrupts G-quadruplex DNA structure and enhances gene expression.

J Am Chem Soc

The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

Published: September 2009

It has been hypothesized that the formation of G-quadruplex structures in the DNA of gene promoters may be functionally linked to transcription and consequently that small molecules that interact with such G-quadruplexes may modulate transcription. We previously reported that triarylpyridines are a class of small molecules that selectively interact with G-quadruplex DNA. Here we describe an unexpected property of one such ligand that was found to disrupt the structure of two different DNA G-quadruplex structures, each derived from sequence motifs in the promoter of the proto-oncogene c-kit. Furthermore, cell-based experiments in a cell line that expresses c-kit (HGC-27) showed that the same ligand increased the expression of c-kit. This contrasts with G-quadruplex-inducing ligands that have been previously found to inhibit gene expression. It would thus appear that the functional consequence of small molecule ligands interacting with G-quadruplex structures may depend on the specific mode of interaction. These observations provide further evidence to suggest that G-quadruplex forming sequence motifs play a role that relates to transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037543PMC
http://dx.doi.org/10.1021/ja901892uDOI Listing

Publication Analysis

Top Keywords

g-quadruplex structures
12
small molecule
8
g-quadruplex dna
8
gene expression
8
small molecules
8
sequence motifs
8
g-quadruplex
6
small
4
molecule disrupts
4
disrupts g-quadruplex
4

Similar Publications

PET Imaging of Solid Tumors with a G-Quadruplex-Targeting F-Labeled Peptide Probe.

J Med Chem

January 2025

Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.

Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.

View Article and Find Full Text PDF

Discovery of a tribenzophenazine analog for binding to the KRAS mRNA G-quadruplex structures in the cisplatin-resistant non-small cell lung cancer.

J Biol Chem

January 2025

Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China. Electronic address:

Lung cancer is the malignant tumor with the highest morbidity and mortality rate worldwide, of which non-small cell lung cancer (NSCLC) accounts for approximately 85%. KRAS mutations are one of the significant mechanisms underlying the occurrence, development, immune escape, and chemotherapy resistance of NSCLC. Two KRAS inhibitors are approved by FDA for the treatment of NSCLC in the past three years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!