Extreme drought conditions accompanied by rising temperatures have characterized the American Southwest during the past decade, causing widespread tree mortality in piñion-juniper woodlands. Piñon pine (Pinus edulis Engelm.) mortality is linked primarily to outbreaks of the pinyon ips (Ips confusus (Leconte)) precipitated by drought conditions. Although we searched extensively, no biotic agent was identified as responsible for death in Juniperus L. spp. in this study; hence this mortality was due to direct drought stress. Here we examine the relationship between tree abundance and patterns of mortality in three size classes (seedling/sapling, pre-reproductive, reproductive) during the recent extended drought in three regions: southwest Colorado, northern New Mexico, and northern Arizona. Piñon mortality varied from 32% to 65%, and juniper mortality from 3% to 10% across the three sites. In all sites, the greatest piñon mortality was in the larger, presumably older, trees. Using logistic regression models, we examined the influence of tree density and basal area on bark beetle infestations (piñon) and direct drought impacts (juniper). In contrast to research carried out early in the drought cycle by other researchers in Arizona, we did not find evidence for greater mortality of piñon and juniper trees in increasingly high density or basal area conditions. We conclude that the severity of this regional drought has masked density-dependent patterns visible in less severe drought conditions. With climate projections for the American Southwest suggesting increases in aridity and rising temperatures, it is critical that we expand our understanding of stress responses expected in widespread piñon-juniper woodlands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/08-1265.1 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:
In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.
View Article and Find Full Text PDFSci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:
Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:
Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!