Mitochondrial bioenergetics and distribution in living human osteoblasts grown on implant surfaces.

Histol Histopathol

Department of Histology, School of Medicine, Laboratory 57, Servicios Centrales de Investigación en Ciencias de la Salud, University of Cadiz, Cadiz, Spain.

Published: October 2009

Osseointegration of implants is crucial for the long-term success of oral implants. The periimplant bone formation by osteoblasts is strongly dependent on the local mechanical environment in the interface zone. Robust demands for energy are placed on osteoblasts during the adhesion process to solid surfaces, and mitochondria are capital organelles in the production of most of the ATP needed for the process. We have assessed the relationship between osteoblast differentiation and mitochondrial bioenergetics in living cells grown on two different titanium surfaces, in order to provide valuable information for the design of material surfaces required for the development of the most appropriate osteogenic surface for osteoblastic anchorage. Combined backscattered and fluorescence confocal microscopy showed that in flat cells grown on a machined surface, highly energized mitochondria were distributed along the cell body. In contrast, cells grown on the rough surface emitted long protrusions in search of surface roughness, with actin stress fibers clearly polarized and highly energized mitochondria clustered at focal adhesion sites. This report using normal human osteoblastic cells indicates that these cells are especially sensitive to surface cues through energy production that enhances the necessary adhesion required for a successful osseointegration.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-24.1275DOI Listing

Publication Analysis

Top Keywords

cells grown
12
mitochondrial bioenergetics
8
highly energized
8
energized mitochondria
8
cells
5
surface
5
bioenergetics distribution
4
distribution living
4
living human
4
human osteoblasts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!