Objective: To determine the response of dysplasia, carcinoma in situ (CIS), and T1 carcinoma of the oral cavity and larynx to photodynamic therapy with porfimer sodium.
Design: Prospective trial.
Setting: A National Cancer Institute-designated cancer institute.
Patients: Patients with primary or recurrent moderate to severe oral or laryngeal dysplasia, CIS, or T1N0 carcinoma.
Intervention: Porfimer sodium, 2 mg/kg of body weight, was injected intravenously 48 hours before treatment. Light at 630 nm for photosensitizer activation was delivered from an argon laser or diode laser using lens or cylindrical diffuser fibers. The light dose was 50 J/cm(2) for dysplasia and CIS and 75 J/cm(2) for carcinoma.
Main Outcome Measures: Response was evaluated at 1 week and at 1 month and then at 3-month intervals thereafter. Response options were complete (CR), partial (PR), and no (NR) response. Posttreatment biopsies were performed in all patients with persistent and recurrent visible lesions.
Results: Thirty patients were enrolled, and 26 were evaluable. Mean follow-up was 15 months (range, 7-52 months). Twenty-four patients had a CR, 1 had a PR, and 1 had NR. Three patients with oral dysplasia with an initial CR experienced recurrence in the treatment field. All the patients with NR, a PR, or recurrence after an initial CR underwent salvage treatment. Temporary morbidities included edema, pain, hoarseness, and skin phototoxicity.
Conclusion: Photodynamic therapy with porfimer sodium is an effective treatment alternative, with no permanent sequelae, for oral and laryngeal dysplasia and early carcinoma.
Trial Registration: clinicaltrials.gov Identifier: NCT00530088.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810853 | PMC |
http://dx.doi.org/10.1001/archoto.2009.98 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.
View Article and Find Full Text PDFJ Lasers Med Sci
November 2024
Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Nowadays, antimicrobial photodynamic therapy (aPDT) has been introduced as one of the minimally invasive methods for disinfection of the surfaces of dental implants. Being derived from seaweed, Chlorella has been used as a photosensitizer in this study. This study aimed to investigate the impacts of aPDT with Chlorella on the rate of reduction of in vitro.
View Article and Find Full Text PDFChem Sci
December 2024
Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.
Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.
Int J Nanomedicine
January 2025
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!