In contrast to infection of superficial tissues, Streptococcus pyogenes infection of deeper tissue can be associated with a significantly diminished inflammatory response, suggesting that this bacterium has the ability to both promote and suppress inflammation. To examine this, we analyzed the behavior of an S. pyogenes mutant deficient in expression of the cytolytic toxin streptolysin S (SLS-) and evaluated events that occur during the first few hours of infection by using several models including injection of zebrafish (adults, larvae, and embryos), a transepithelial polymorphonuclear leukocyte (PMN) migration assay, and two-photon microscopy of mice in vivo. In contrast to wild-type S. pyogenes, the SLS- mutant was associated with the robust recruitment of neutrophils and significantly reduced lethal myositis in adult zebrafish. Similarly, the mutant was attenuated in embryos in its ability to cause lethality. Infection of larva muscle allowed an analysis of inflammation in real time, which revealed that the mutant had recruited PMNs to the infection site. Analysis of transepithelial migration in vitro suggested that SLS inhibited the host cells' production of signals chemotactic for neutrophils, which contrasted with the proinflammatory effect of an unrelated cytolytic toxin, streptolysin O. Using two-photon microscopy of mice in vivo, we showed that the extravasation of neutrophils during infection with SLS- mutant bacteria was significantly accelerated compared to infection with wild-type S. pyogenes. Taken together, these data support a role for SLS in the inhibition of neutrophil recruitment during the early stages of S. pyogenes infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772533PMC
http://dx.doi.org/10.1128/IAI.00420-09DOI Listing

Publication Analysis

Top Keywords

pyogenes infection
12
infection
9
neutrophil recruitment
8
recruitment early
8
early stages
8
streptococcus pyogenes
8
cytolytic toxin
8
toxin streptolysin
8
two-photon microscopy
8
microscopy mice
8

Similar Publications

Pleural infections are common and associated with substantial healthcare costs, morbidity, and mortality. Accurate diagnosis remains challenging due to low culture positivity rates, frequent polymicrobial involvement, and non-specific diagnostic biomarkers. Here, we undertook a prospective study examining the feasibility and performance of molecular methods for diagnosing suspected pleural infection.

View Article and Find Full Text PDF

Background: Ecthyma is a deeper form of impetigo involving the epidermis and dermis causing ulcerative plaques. Pathogens commonly responsible for the disease (group A beta-hemolytic streptococcus and Staphylococcus aureus) typically afflicts children, presenting during early stages with skin lesions that can closely resemble other vesicular and ulcerative dermatoses, such as those observed in mpox infection. The ongoing global outbreak of monkeypox has escalated the urgency for clinicians to accurately differentiate between these conditions due to their overlapping dermatological manifestations.

View Article and Find Full Text PDF

[Focus on the outbreaks of invasive group A streptococcal disease].

Zhonghua Yi Xue Za Zhi

January 2025

Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China.

In recent years, particularly since the outbreaks of scarlet fever and invasive group A streptococcal diseases/infections (iGAS) in several European countries in 2022, iGAS has garnered widespread attention. Recently, Japan experienced an outbreak of a specific type of iGAS, streptococcal toxic shock syndrome (STSS). The outbreak was reported under the label"flesh-eating bacteria,"emphasizing the pathogenic potential of group A streptococcus (GAS).

View Article and Find Full Text PDF

Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.

View Article and Find Full Text PDF

Introduction: Turpentine derivatives and Eucalyptus oil are herbal substances traditionally used to treat various skin infections. Limited non-clinical data suggest they exert an immunological activity, but only scant information exists on their antibiotic effects. This in vitro study has been carried out to investigate the antibacterial and antifungal activity of a marketed skin ointment, its active pharmaceutical ingredients larch turpentine, eucalyptus oil, and turpentine oil, and their mixture, against bacteria and yeasts commonly present on the skin and causing skin infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!