Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2009.08.004 | DOI Listing |
Foods
January 2025
College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China.
The key flavor compound formation pathways resulting from indigenous microorganisms during the spontaneous fermentation of wine have not been thoroughly described. In this study, high-throughput metagenomic sequencing and untargeted metabolomics were utilized to investigate the evolution of microbial and metabolite profiles during spontaneous fermentation in industrial-scale wine production and to elucidate the formation mechanisms of key flavor compounds. Metabolome analysis showed that the total amount of esters, fatty acids, organic acids, aldehydes, terpenes, flavonoids, and non-flavonoids increased gradually during fermentation.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
From the time of discovery, CHNHSnI has been a promising candidate in photovoltaics due to its outstanding optoelectronic properties. However, stabilization was not easy to achieve in CHNHSnI-based solar cells. Because CHNHSnI was used as an absorber, its naturally-occurring self-doping property spontaneously modified band alignment, which increased carrier recombination and decreased the efficiency of solar cell gradually.
View Article and Find Full Text PDFGels
January 2025
Ecole Nationale Supérieure de Chimie de Rennes, Univ. Rennes, CNRS, UMR 6226, CEDEX 7, 35708 Rennes, France.
A new green hydrogel consisting of cherry stone (CS) powder and sodium alginate (SA) was synthesized through physical crosslinking. The product had a mean diameter of 3.95 mm, a moisture content of 92.
View Article and Find Full Text PDFSci Rep
January 2025
Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh (AUUP), Sector-125, Gautam Budh Nagar, Noida, 201313, India.
This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!