Abeta(17-42) (so-called p3) amyloid is detected in vivo in the brains of individuals with Alzheimer's disease or Down's syndrome. We investigated the polymorphism of Abeta(17-42) oligomers based on experimental data from steady-state NMR measurements, electron microscopy, two-dimensional hydrogen exchange, and mutational studies, using all-atom molecular-dynamics simulation with explicit solvent. We assessed the structural stability and the populations. Our results suggest that conformational differences in the U-turn of Abeta(17-42) lead to polymorphism in beta-sheet registration and retention of an ordered beta-strand organization at the termini. Further, although the parallel Abeta(17-42) oligomer organization is the most stable of the conformers investigated here, different antiparallel Abeta(17-42) organizations are also stable and compete with the parallel architectures, presenting a polymorphic population. In this study we propose that 1), the U-turn conformation is the primary factor leading to polymorphism in the assembly of Abeta(17-42) oligomers, and is also coupled to oligomer growth; and 2), both parallel Abeta(17-42) oligomers and an assembly of Abeta(17-42) oligomers that includes both parallel and antiparallel organizations contribute to amyloid fibril formation. Finally, since a U-turn motif generally appears in amyloids formed by full proteins or long fragments, and since to date these have been shown to exist only in parallel architectures, our results apply to a broad range of oligomers and fibrils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726324 | PMC |
http://dx.doi.org/10.1016/j.bpj.2009.05.042 | DOI Listing |
Chemphyschem
July 2018
Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
Various cytotoxic mechanisms for neurodegenerative disease are induced by specific conformations of Aβ intermediates. The efforts to understand the diverse intermediate forms of amyloid oligomers have been focused on understanding the aggregation mechanism of specific morphologies for Aβ intermediates. However, these are still not easy tasks to be accomplished because the diverse conformations of Aβ intermediates can be altered during the aggregation process, even though the same Aβ monomers are present.
View Article and Find Full Text PDFThe crucial role of water in amyloid-β(Aβ) fibril proteins is evaluated in several ways including the water's thermodynamic and kinetic solvation effects. As regards the water's character, its hindered-rotation barriers are also considered. The following protein molecules considered here are: the Aβ40 (PDB ID: 2LMN), Aβ42 (PDB ID: 5KK3 and 2NAO) and the double-layered Aβ17-42 fibril.
View Article and Find Full Text PDFJ Pept Sci
November 2017
Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China.
The oligomerization and fibrillation of β-amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1-28, Aβ1-36, Aβ11-42, Aβ17-42, Aβ1-40 and Aβ1-42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy.
View Article and Find Full Text PDFProtein Pept Lett
October 2017
Molecular Modelling & Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam. India.
Background: Recent experiments with Amyloid β1-42 peptide have indicated that the initial dimerization of Aβ1-42 monomers to form amyloid dimers stand out as a key event in the generation of toxic oligomers. However, the structural characterization of Aβ1-42 dimer at the atomistic level and the dimerization mechanism by which Aβ1-42 peptides co-aggregate still remains not clear.
Objective: In the present study, the process of Aβ17-42 peptide dimerization which is known to play an important role in the plaque formation in Alzheimer's disease was evaluated in terms of potential of mean force.
PLoS One
May 2016
Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de CardiologÃa, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México.
The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!