DNA deformability and hydration are both sequence-dependent and are essential in specific DNA sequence recognition by proteins. However, the relationship between the two is not well understood. Here, systematic molecular dynamics simulations of 136 DNA sequences that differ from each other in their central tetramer revealed that sequence dependence of hydration is clearly correlated with that of deformability. We show that this correlation can be illustrated by four typical cases. Most rigid basepair steps are highly likely to form an ordered hydration pattern composed of one water molecule forming a bridge between the bases of distinct strands, but a few exceptions favor another ordered hydration composed of two water molecules forming such a bridge. Steps with medium deformability can display both of these hydration patterns with frequent transition. Highly flexible steps do not have any stable hydration pattern. A detailed picture of this correlation demonstrates that motions of hydration water molecules and DNA bases are tightly coupled with each other at the atomic level. These results contribute to our understanding of the entropic contribution from water molecules in protein or drug binding and could be applied for the purpose of predicting binding sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726331 | PMC |
http://dx.doi.org/10.1016/j.bpj.2009.05.049 | DOI Listing |
J Chem Inf Model
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with -values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India.
The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
The preference of water self-ions (hydronium and hydroxide) toward air/oil-water interfaces is one of the hottest topics in water research due to its importance for understanding properties, phenomena, and reactions of interfaces. In this work, we performed enhanced-sampling molecular dynamics simulations based on state-of-the-art neural network potentials with approximate M06-2X accuracy to investigate the propensity of hydronium and hydroxide ions at air/oil(decane)-water interfaces, which can simultaneously describe well the water autoionization process forming these ions, the recombination of ions, and the ionic distribution along the normal distance to the interface by employing a set of appropriate Voronoi collective variables. A stable ionic double-layer distribution is observed near the air-water interface, while the distribution is different at oil-water interfaces, where hydronium tends to be repelled from the interface into the bulk water, whereas hydroxide, with an interfacial stabilization free energy of -0.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!