DNA methylases from mouse and pea have been purified and characterized. Both are high molecular mass enzymes that show greater activity with hemimethylated than unmethylated substrate DNA. Both methylate cytosines in CpG preferentially, but not exclusively and show similar kinetics of methylation, which makes it difficult to saturate all possible sites on the DNA, but procedures are described that circumvent this problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rstb.1990.0003 | DOI Listing |
Nat Commun
January 2025
Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Electronic address:
Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Second Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China.
Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!