The aim of this conceptual framework paper is to contribute to the further development of the modelling of effects of drugs or toxic agents by an approach which is based on the underlying physiology and pathology of the biological processes. In general, modelling of data has the purpose (1) to describe experimental data, (2a) to reduce the amount of data resulting from an experiment, e.g. a clinical trial and (2b) to obtain the most relevant parameters, (3) to test hypotheses and (4) to make predictions within the boundaries of experimental conditions, e.g. range of doses tested (interpolation) and out of the boundaries of the experimental conditions, e.g. to extrapolate from animal data to the situation in man. Describing the drug/xenobiotic-target interaction and the chain of biological events following the interaction is the first step to build a biologically based model. This is an approach to represent the underlying biological mechanisms in qualitative and also quantitative terms, thus being inherently connected in many aspects to systems biology. As the systems biology models may contain variables in the order of hundreds connected with differential equations, it is obvious that it is in most cases not possible to assign values to the variables resulting from experimental data. Reduction techniques may be used to create a manageable model which, however, captures the biologically meaningful events in qualitative and quantitative terms. Until now, some success has been obtained by applying empirical pharmacokinetic/pharmacodynamic models which describe direct and indirect relationships between the xenobiotic molecule and the effect, including tolerance. Some of the models may have physiological components built in the structure of the model and use parameter estimates from published data. In recent years, some progress toward semi-mechanistic models has been made, examples being chemotherapy-induced myelosuppression and glucose-endogenous insulin-antidiabetic drug interactions. We see a way forward by employing approaches to bridge the gap between systems biology and physiologically based kinetic and dynamic models. To be useful for decision making, the 'bridging' model should have a well founded mechanistic basis, but being reduced to the extent that its parameters can be deduced from experimental data, however capturing the biological/clinical essential details so that meaningful predictions and extrapolations can be made.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-7843.2009.00456.xDOI Listing

Publication Analysis

Top Keywords

experimental data
12
systems biology
12
conceptual framework
8
boundaries experimental
8
experimental conditions
8
qualitative quantitative
8
quantitative terms
8
data
7
models
6
experimental
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!