In discussions about the relative rate of molecular evolution, intraspecific variability in rate is rarely considered. An underlying assumption is that intraspecific sequence differences are small, and thus variations in rate would be difficult to detect or would not affect comparisons among distantly related taxa. However, several studies on mammalian mitochondrial DNA (mtDNA) have revealed considerable intraspecific sequence divergence. In this report, we test for differences in the rate of intraspecific evolution by comparing mtDNA sequences, as inferred from restriction site polymorphisms and direct sequencing, between mtDNA genotypes of the eastern African black-backed jackal, Canis mesomelas elongae, and those of two other sympatric jackal species. Our results are unusual for several reasons. First, mtDNA sequence divergence within several contiguous black-backed jackal populations is large (8.0%). Previous intraspecific studies of terrestrial mammals have generally found values of less than 5% within a single population, with larger divergence values most often occurring among mtDNA genotypes from geographically distant or isolated localities. Second, only 4 mtDNA genotypes were present in our sample of 64 jackals. The large sequence divergence observed among these mtDNA genotypes suggests there should be many more genotypes of intermediate sequence divergence if they had evolved in sympatry. Finally, estimates of the rate of mtDNA sequence evolution differ by approximately 2- to 4-fold among black-backed jackal mtDNA genotypes, thus indicating a substantial heterogeneity in the rate of sequence evolution. The results are difficult to reconcile with ideas of a constant molecular clock based on random fixation of selectively neutral or nearly neutral mtDNA sequence mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC53565 | PMC |
http://dx.doi.org/10.1073/pnas.87.5.1772 | DOI Listing |
G3 (Bethesda)
January 2025
Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France.
Recombination is advantageous over the long-term, as it allows efficient selection and purging deleterious mutations. Nevertheless, recombination suppression has repeatedly evolved in sex and mating-type chromosomes. The evolutionary causes for recombination suppression and the proximal mechanisms preventing crossing overs are poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests.
View Article and Find Full Text PDFNeurology
February 2025
Department of Advanced Biomedical Sciences, University "Federico II," Naples, Italy.
Background And Objectives: Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network analyses typically require advanced MRI sequences not commonly acquired in clinical practice. Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection and morphometric similarity networks in people with MS (pwMS), along with their relationship with clinical disability.
Methods: In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC) was retrospectively analyzed.
Ann Bot
January 2025
Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan.
Background And Aims: Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe.
View Article and Find Full Text PDFMol Ecol
January 2025
Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden.
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!