Avian chemoreception: an electrophysiological approach.

Ann N Y Acad Sci

Division of Animal Production and Public Health, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.

Published: July 2009

The first detailed physiological evidence for olfactory and trigeminal chemoreception in an avian species is provided by a series of investigations in the chicken (Gallus domesticus). Initial work indicated that the activity of avian olfactory bulb neurones closely resembles that of other vertebrates, exhibiting variable spontaneous temporal firing patterns with mean firing rates between those reported for mammals and reptiles. Application of odors directly to the olfactory epithelium showed that like mammals, avian olfactory bulb neurones respond in the form of inhibition and excitation with accompanying changes in temporal firing pattern. When exposed to a range of concentrations of a single odor, all responsive neurones exhibited an ability to discriminate small step-changes in concentration producing clear stimulus response relationships. Avian trigeminal chemoreception was also investigated by examining the responses of single mucosal receptors in the nasal cavity and palate. Slowly and rapidly adapting nasal mechanoreceptors were identified, some of which exhibited chemical sensitivity when exposed to ammonia gas, acetic acid vapor or carbon dioxide. These results demonstrate that polymodal nociceptors are present in avian nasal mucosa and represent the first attempt in any species to quantify the responses of single trigeminal receptors to a range of concentrations of noxious airborne chemicals. Collectively, the findings demonstrate how an electrophysiological approach can improve our understanding of the underlying sensory physiology relating to avian perception of the chemical environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2009.03904.xDOI Listing

Publication Analysis

Top Keywords

electrophysiological approach
8
trigeminal chemoreception
8
avian olfactory
8
olfactory bulb
8
bulb neurones
8
temporal firing
8
range concentrations
8
responses single
8
avian
7
avian chemoreception
4

Similar Publications

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Neural cell types have classically been characterized by their anatomy and electrophysiology. More recently, single-cell transcriptomics has enabled an increasingly fine genetically defined taxonomy of cortical cell types, but the link between the gene expression of individual cell types and their physiological and anatomical properties remains poorly understood. Here, we develop a hybrid modeling approach to bridge this gap.

View Article and Find Full Text PDF

Surgical and Ablation Therapies for Atrial Appendage Tachycardia in Children.

JACC Clin Electrophysiol

December 2024

Department of Pediatric Cardiology, Heart Center, First Hospital of Tsinghua University (Beijing Huaxin Hospital), Chaoyang District, Beijing, China.

Background: Atrial tachycardia (AT) originate from the atrial appendage present unique clinical challenges in pediatrics. It is typically persistent, frequently leading to tachycardiomyopathy, and poses significant treatment difficulties.

Objectives: This study aimed to collate and analyze the clinical characteristics and therapeutic outcomes of radiofrequency ablation (RFCA) and with atrial appendage resection for the treatment of AT originating from the atrial appendages in pediatric patients.

View Article and Find Full Text PDF

Subclavian Ansae Stimulation on Cardiac Hemodynamics and Electrophysiology in Atrial Fibrillation: A Target for Sympathetic Neuromodulation.

JACC Clin Electrophysiol

December 2024

St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:

Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.

Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!