Behavioral studies of umami: tales told by mice and rats.

Ann N Y Acad Sci

Department of Biology and Vermont Chemical Senses Group, University of Vermont, Burlington, Vermont 05406, USA.

Published: July 2009

Psychophysical research with rats and mice has been instrumental in understanding umami taste transduction and perception. Although early studies suggested that an NMDA-like receptor detected substances that elicit an umami taste, studies using behavioral methods with both rats and mice indicate that the picture is much more complex. When the G protein-coupled receptor T1R1+T1R3 was discovered, it was believed to be the umami receptor and a more broadly tuned L-amino acid receptor. However, since then a number of behavioral studies, like molecular and physiological studies, report evidence that other receptors may contribute to umami taste. For example, T1R3 knockout mice (KO) have only slightly elevated detection thresholds for monosodium glutamate (MSG) and L-alanine. In conditioned taste aversion studies, T1R3 KO mice show bidirectional generalization of the aversion between MSG and L-alanine, suggesting that these substances have similar tastes. However, these KO mice can discriminate between the tastes of the two substances, indicating other receptors also respond to these amino acids. (RS)-alpha-cycloprophy-4-phosphonophenylglycine (CPPG), a potent mGluR4 antagonist, decreases an aversion to MSG in rats while increasing the strength of generalization of the aversion to L-arginine or L-serine. These behavioral studies suggest that glutamate can activate several putative receptors, most notably T1R1+T1R3 and taste-mGluR4, and possibly NMDA-like receptors or taste-mGluR1. These receptors generate similar but not identical sensations which, when combined, form a complex perception identified as umami. Further, these studies suggest that afferent signaling from T1R1+T1R3 and taste-mGluR4 likely combine to generate the taste sensations associated with other L-amino acids.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2009.03933.xDOI Listing

Publication Analysis

Top Keywords

behavioral studies
12
umami taste
12
rats mice
8
msg l-alanine
8
generalization aversion
8
aversion msg
8
t1r1+t1r3 taste-mglur4
8
studies
7
umami
6
mice
6

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Beyond the Herald Patch: Exploring the Complex Landscape of Pityriasis Rosea.

Am J Clin Dermatol

January 2025

Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.

Pityriasis rosea (PR) is a prevalent dermatological condition characterized by a distinctive herald patch, followed by secondary eruptions, often forming a "Christmas tree" pattern on the trunk. Despite its recognizable clinical presentation, the etiology of PR remains uncertain, with hypotheses pointing to both infectious and noninfectious origins. Human herpesviruses (HHV) 6 and 7 have been implicated, with evidence suggesting viral reactivation as a potential trigger.

View Article and Find Full Text PDF

The COVID-19 pandemic led to significant shifts in societal norms and individual behaviors, including changes in physical activity levels. This study examines the relationship between socioeconomic and sociodemographic factors and changes in physical activity levels during the pandemic compared to pre-pandemic levels among adult Arkansans. Survey data were collected from 1,205 adult Arkansans in July and August 2020, capturing socioeconomic and sociodemographic characteristics and information on physical activity changes since the onset of the pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!