In eukaryotes, RNA binding proteins (RBPs) play an integral role not only in RNA processing within the nucleus, but also in the cytoplasmic events of RNA transport, localization, translation, storage and degradation. While many studies have been done, relatively little is known about RBPs in plants. As part of our continuing efforts to understand cytoplasmic gene expression events in developing rice seed (Oryza sativa L.), a proteomics approach was used to identify cytoplasmic-localized, cytoskeletal-associated RBPs. The nucleic acid binding fraction from a cytoskeletal-enriched rice seed extract was isolated by Poly(U)-Sepharose affinity chromatography and analyzed using 2D gel electrophoresis. Analysis of 162 excised protein spots using mass spectrometry led to the identification of 148 distinct proteins, in addition to the highly abundant globulin and glutelin seed storage proteins. Identified proteins include those involved in RNA processing, translation, protein modification, cell signaling, and metabolism, as well as a number of hypothetical proteins. Proteins of particular interest with roles in RNA metabolism are discussed. These results have been deposited within the Rice RNA Binding Protein Database as part of an integrated study of plant cytoskeletal-associated RBPs using developing rice seed as a model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr900537p | DOI Listing |
Int J Mol Sci
December 2024
State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Yield-related traits have higher heritability and lower genotype-by-environment interaction, making them more suitable for genetic studies in comparison with the yield per se. Different populations have been developed and employed in QTL mapping; however, the use of reciprocal SSSLs is limited. In this study, three kinds of bi-parental populations were used to investigate the stable and novel QTLs on six yield-related traits, i.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
Glume-opening of thermosensitive genic male sterile (TGMS) rice ( L.) lines after anthesis is a serious problem that significantly reduces the yield and quality of hybrid seeds. However, the molecular mechanisms regulating the opening and closing of rice glumes remain largely unclear.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.
Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.
View Article and Find Full Text PDFGene
January 2025
College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!