The drawbacks associated with antibiotic-based treatment of infectious diseases including an increase in multidrug-resistant strains and adverse reactions have lead to the search of antimicrobial peptide elicitors (APE), harmless substances that boost an overexpression of innate immunity genes. Knowledge on innate immunity activation pathways and their interactions with adaptive immunity would lead to more effective, faster and safer APE-based treatments to battle infections which still are a common public health problem worldwide.
Download full-text PDF |
Source |
---|
Plant Cell
December 2024
School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
Int J Mol Sci
December 2024
Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
Plant diseases diminish crop yields and put the world's food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania.
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
A novel fluorescent i-motif DNA silver nanoclusters system has been developed for visualization of reactive oxygen species in plants, enabling the detection of intracellular signaling in plant cells. Reactive oxygen species (ROS) are crucial in plant growth, defense, and stress responses, making them vital for improving crop resilience. Various ROS sensing methods for plants have been developed to detect ROS in vitro and in vivo.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Plant roots grow in association with a community of microorganisms collectively known as the rhizosphere microbiome. Immune activation in response to elicitors like the flagellin-derived epitope flg22 restricts bacteria on plant roots but also inhibits plant growth. Some commensal root-associated bacteria are capable of suppressing the plant immune response to elicitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!