The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds.

J Tissue Eng Regen Med

Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada.

Published: December 2009

Tissue engineering and stem cell therapy hold great potential of being able to fully restore, repair and replace damaged, diseased or lost tissues in the body. Biocompatible porous scaffolds are used for the delivery of cells to the regeneration sites. Marrow stromal cells (MSCs), also referred to as mesenchymal stem cells, are an attractive cell source for tissue engineering, due to the relative ease of isolation and the ability of in vitro expanded MSCs to generate multiple cell types, including osteoblasts, chondrocytes and adipocytes. This study utilized a novel technique called microwave vacuum drying to fabricate porous gelatin-alginate scaffolds for the delivery of MSCs and investigated the differential in vitro and in vivo responses of MSCs seeded on these scaffolds. Scaffold total porosity was found to decrease with increased cross-link density but the pore size and pore size distribution were not affected. Although highly porous, the scaffold had relatively small pores and limited interconnectivity. The porous gelatin-alginate scaffold demonstrated excellent biocompatibility with neovascularization on the surfaces and was bioresorbed completely in vivo, depending upon the cross-link density. MSCs were able to attach and proliferate at the same rate on the scaffolds, and the self-renewal potential of MSC cultures was similar during both in vitro culture and in vivo implantation. However, the subcutaneous microenvironment was found to suppress MSC differentiation along the osteogenic, chondrogenic and adipogenic lineages compared to in vitro conditions, highlighting the differential responses of MSCs cultured in vitro compared to implantation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.201DOI Listing

Publication Analysis

Top Keywords

porous gelatin-alginate
12
differential vitro
8
vitro vivo
8
vivo responses
8
marrow stromal
8
stromal cells
8
gelatin-alginate scaffolds
8
tissue engineering
8
scaffolds delivery
8
responses mscs
8

Similar Publications

Gelatin-alginate hydrogel for near-field electrospinning assisted 3D and 4-axis bioprinting.

Carbohydr Polym

January 2025

Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Electronic address:

A near-field electrospinnable and three-dimensional (3D) bioprintable gelatin-alginate hydrogel was synthesized by controlling a moderate amount of alginate and a limited amount of crosslinker, tannic acid. This cytocompatible gelatin-alginate tough hydrogel exhibited excellent shape fidelity, a self-standing height exceeding 20 mm, and the capability for multilayer and four-axis 3D printing of complex scaffold shapes. The control of gel strength and rheology enables this hydrogel for successful stretching extrusion under an electric field in near-field electrospinning-induced 3D printing and four-axis printing.

View Article and Find Full Text PDF
Article Synopsis
  • Injectable hydrogels have gained popularity for soft tissue regeneration due to their ability to adapt to irregular tissue shapes and provide minimally invasive treatment.
  • This study introduces a new injectable porous scaffold made from natural polymers that can be customized in terms of stiffness and other properties, allowing it to mimic native tissue characteristics closely.
  • Results showed that by varying concentrations of components, the scaffold can achieve a compression modulus suitable for all soft tissues and has high biocompatibility, making it a promising option for effective tissue repair and regeneration.
View Article and Find Full Text PDF

Clinical bone-morphogenetic protein 2 (BMP2) treatment for bone regeneration, often resulting in complications like soft tissue inflammation and ectopic ossification due to high dosages and non-specific delivery systems, necessitates research into improved biomaterials for better BMP2 stability and retention. To tackle this challenge, we introduced a groundbreaking bone-targeted, lipoplex-loaded, three-dimensional bioprinted bilayer scaffold, termed the polycaprolactone-bioink-nanoparticle (PBN) scaffold, aimed at boosting bone regeneration. We encapsulated BMP2 within the fibroin nanoparticle based lipoplex (Fibroplex) and functionalized it with DSS for bone tissue-specific targeting.

View Article and Find Full Text PDF

The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production.

View Article and Find Full Text PDF

Therapeutic applications of biological macromolecules and scaffolds for skeletal muscle regeneration: A review.

Int J Biol Macromol

May 2024

Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea. Electronic address:

Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!