The relationship between nutrient removal and loading rate was examined using data from five forested wetlands in Louisiana that have received secondarily treated effluent from 3 to 60 years. Loading rates ranged from 0.65 to 26.80 g/m(2)/yr for total nitrogen and 0.18 to 8.96 g/m(2)/yr for total phosphorus. At loading rates below 20 g/m(2)/yr, total nitrogen concentrations in surface waters of Louisiana forested wetlands were reduced to background concentrations (i.e., < or =3 mg/l). Similarly, at loading rates below 2 g/m(2)/yr, total phosphorus concentrations were also generally reduced to background concentrations (i.e., < or =1 mg/l). These data demonstrate that freshwater forested wetlands can reduce nutrient concentrations in treated effluent to background concentrations present in relatively undisturbed wetlands. An understanding of the relationship between loading rates and nutrient removal in natural wetlands is important, particularly in Louisiana where discharges of fresh water are being used in ecosystem restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-009-9348-y | DOI Listing |
Sci Total Environ
January 2025
Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States.
As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China.
Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina.
Herein, we report the presence of a plant paleocommunity, dominated by ferns of the family Osmundaceae, structurally preserved from the only known Mesozoic, fossiliferous geothermal deposits, from the La Matilde Formation (Middle-Upper Jurassic) in the Deseado Massif of Southern Patagonia, Argentina. A total of 13 siliceous chert blocks sampled in an area of approximately 250 m, preserving a monotypic assemblage dominated by Osmundaceae embedded within its original swampy substrate, are documented. Additional Osmundaceae and fewer ferns and conifers are present in the stratigraphically continuous, adjacent chert levels.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Oceanography and Spatial Information, China University of Petroleum East China-Qingdao Campus, Qingdao 266580, China.
Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!