Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening.

Am J Physiol Heart Circ Physiol

Department of Biochemistry and Molecular Biology and CNR Institute of Biomembranes and Bioenergetics, Section of Anaesthesia, University of Bari, Bari, Italy.

Published: October 2009

Melatonin, a well-known antioxidant, has been shown to protect against ischemia-reperfusion myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during ischemia-reperfusion and therefore a possible target for cardioprotection. In the present study, we tested the hypothesis that melatonin could protect heart against ischemia-reperfusion injury by inhibiting MPTP opening. Isolated perfused rat hearts were subjected to global ischemia and reperfusion in the presence or absence of melatonin in a Langerdoff apparatus. Melatonin treatment significantly improves the functional recovery of Langerdoff hearts on reperfusion, reduces the infarct size, and decreases necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria isolated from melatonin-treated hearts are less sensitive than mitochondria from reperfused hearts to MPTP opening as demonstrated by their higher resistance to Ca(2+). Similar results were obtained following treatment of ischemic-reperfused rat heart with cyclosporine A, a known inhibitor of MPTP opening. In addition, melatonin prevents mitochondrial NAD(+) release and mitochondrial cytochrome c release and, as previously shown, cardiolipin oxidation associated with ischemia-reperfusion. Together, these results demonstrate that melatonin protects heart from reperfusion injury by inhibiting MPTP opening, probably via prevention of cardiolipin peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00163.2009DOI Listing

Publication Analysis

Top Keywords

mptp opening
20
injury inhibiting
12
melatonin protects
8
protects heart
8
heart ischemia-reperfusion
8
ischemia-reperfusion injury
8
mitochondrial permeability
8
permeability transition
8
transition pore
8
inhibiting mptp
8

Similar Publications

Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration.

View Article and Find Full Text PDF
Article Synopsis
  • Ripk3 is key in acute lung injury (ALI) by driving endothelial cell damage and inflammation, although the exact mechanisms are not fully understood.
  • Studies using Ripk3-deficient mice revealed that removing Ripk3 improved lung tissue health, decreased inflammation, oxidative stress, and endothelial dysfunction after exposure to lipopolysaccharide (LPS).
  • Ripk3 was found to inhibit the AMPK pathway and promote necroptosis in endothelial cells by affecting mitochondrial function, suggesting it could be a target for new treatments for ALI.
View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Inhibition of the mitochondrial permeability transition pore as a promising target for protecting auditory function in cisplatin-induced hearing loss.

Biomed Pharmacother

December 2024

Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea. Electronic address:

mPTP is a multi-protein complex that opens in mitochondria during cell death. Cisplatin-induced hearing loss is also known to be caused by mPTP opening. Thus, our study evaluated the protective effect of a novel mPTP inhibitor named DBP-iPT against cisplatin-induced hearing loss.

View Article and Find Full Text PDF

Polyamines Protect Porcine Sperm from Lipopolysaccharide-induced Mitochondrial Dysfunction and Apoptosis via Casein Kinase 2 Activation.

J Anim Sci

December 2024

Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Bacterial contamination is an inevitable issue during the processing of semen preservation in pigs. As a prototypical endotoxin from Gram-negative bacteria in semen, lipopolysaccharide (LPS) undermines sperm function during liquid preservation. Spermine and spermidine could protect cells against LPS-induced injury, and the content of spermine and spermidine in seminal plasma is positively correlated with sperm quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!