The CAAT-binding transcription factor 1/nuclear factor 1 binding site is important in beta-myosin heavy chain antisense promoter regulation in rats.

Exp Physiol

Department of Physiology and Biophysics, University of California, Irvine, D-346, Medical Sciences Building I, Irvine, CA 92697, USA.

Published: December 2009

The rat heart expresses two myosin heavy chain (MHC) isoforms, beta and alpha; these genes are arranged in tandem on the same chromosome. We have reported that an antisense (AS) beta RNA starts in the intergenic (IG) region between beta and alpha genes and extends to overlap the beta gene. We propose that in adult rats, both the alpha sense and IG betaAS RNA expression are activated by an IG bidirectional promoter and that the transcription of betaAS RNA interferes with the sense beta, resulting in low levels of beta mRNA and high levels of alpha, a phenotype seen in a typical rat heart. A previous report examined the activity of the betaAS promoter and showed that a 559 bp fragment of the betaAS promoter (-2285 to -1726; relative to alphaMHC gene start site) injected into rat ventricle was activated in control heart, and decreased significantly in response to hypothyroidism (propylthiouracil induced) and diabetes (streptozotocin induced) and increased in hyperthyroid rats (T(3) induced), similar in pattern to the endogenous betaAS RNA. In the present paper, we demonstrate with electrophoretic mobility shift analyses that ventricular nuclear proteins are interacting with a nuclear factor 1/CAAT-binding transcription factor 1 (NF1/CTF1) binding site, and a supershift assay indicates that the protein binding at this site is antigenetically related to the CTF1/NF1 factor. Moreover, a mutation of the CTF1/NF1 site within the 559 bp promoter region nearly abolished promoter activity in vivo in control, STZ- and PTU-treated rats. Based on these findings, we conclude that the NF1 site is critical to betaAS promoter regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792187PMC
http://dx.doi.org/10.1113/expphysiol.2009.049692DOI Listing

Publication Analysis

Top Keywords

binding site
12
betaas rna
12
betaas promoter
12
transcription factor
8
heavy chain
8
promoter regulation
8
rat heart
8
beta alpha
8
alpha genes
8
promoter
7

Similar Publications

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

lncRNA SNHG6 Knockdown Promotes Microglial M2 Polarization and Alleviates Spinal Cord Injury via Regulating the miR-182-5p/NEUROD4 Axis.

Appl Biochem Biotechnol

January 2025

Department of Neurosurgery, General Medical 300 Hospital, No. 420 Huanghe Road, Guiyang City, 550006, Guizhou Province, China.

Spinal cord injury (SCI) is one of the devastating neurological disorders that leads to a loss of motor and sensory functions. Long non-coding RNA small nucleolar RNA host gene 6 (lncRNA SNHG6) plays a crucial role in inflammatory regulation across various diseases. This study investigates the role of SNHG6 in SCI development and its underlying regulatory mechanisms.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!