A novel superabsorbent composite was synthesized by copolymerization reaction of partially neutralized acrylic acid (AA) on bentonite micropowder using N,N'-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator in aqueous solution. The superabsorbent composite (SAC) was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water retention test of SAC was also performed. The water absorbency of SAC synthesized was found to be 352 and 110 g H(2)Og(-1) in distilled water and 0.2% NaCl, respectively. Sorption capacity of SAC was investigated for heavy metal ions (HMI) using Langmuir and Freundlich model of adsorption. The maximum adsorption capacity (Q(m)) of HMI onto the bentonite-based SAC from their solution was 1666.67, 270.27, 416.67 and 222.22 mg g(-1) for Pb(II), Ni(II), Cd(II) and Cu(II), respectively. All results suggested that SAC offers excellent potential for HMI removal from contaminated water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.06.067 | DOI Listing |
J Wound Care
January 2025
Coloplast A/S, Holtedam 1, Humlebæk, Denmark.
Exudate management is essential for creating a moist wound environment that promotes optimal healing, especially in highly exuding wounds, where choosing an appropriate wound dressing to handle high volumes of exudate is a key part of the wound management strategy. Superabsorbent wound dressings (SWDs) have been designed to absorb and retain large amounts of exudate. Thus, they are advocated for management of wounds with moderate-to-high levels of exudate to reduce the risk of leakage and damage to the periwound skin.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFGels
December 2024
Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.
Carboxymethyl cellulose sodium salt (CMC)-based superabsorbents are promising materials for the development of agricultural matrices aimed at water management and slow-release fertilizer production. However, an increase in the CMC content tends to reduce their water-absorbing capacity. This study aims to develop a cost-effective method for producing eco-friendly superabsorbents with enhanced water-absorbing capacity by incorporating a porogen and employing lyophilization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea. Electronic address:
Although hemostatic powders are commonly used in clinical and emergency settings, they frequently show poor absorption, raise cytotoxicity issues, and are not effective for fatal non-compressible bleeding. The purpose of this research is to create a self-gelling hemostatic powder based on chitosan, bentonite, and sodium polyacrylate (CBS) to improve the hemostatic effect. When liquid comes into contact with CBS powders, they can fuse and form a stable hydrogel in less than 30s.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, 11365-9161 Tehran, Iran.
The ability of a surface to completely absorb a liquid droplet is an important property that can be controlled by geometrical structure and chemical composition of the surface. Here, using Laplace pressure and Gibbs free energy (GFE) considerations, a capped truncated microcone array geometry is proposed to obtain a near zero degree for contact angle (θ) of a water droplet. Our results showed that two essential conditions must be met to achieve a superabsorbent surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!