Arachidonoyl amino acids are a class of endogenous lipid messengers that are expressed in the mammalian central nervous system and peripherally. While several of their prominent pharmacologic effects have been documented, the mechanism by which arachidonoyl amino acids are biosynthesized has not been defined. We have previously observed that the mitochondrial protein, cytochrome c, is capable of catalyzing the formation of the prototypic arachidonoyl amino acid, arachidonoyl glycine, utilizing arachidonoyl CoA and glycine as substrates, in the presence of hydrogen peroxide. Here we report that cytochrome c is similarly able to catalyze the formation of N-arachidonoyl serine, N-arachidonoyl alanine, and N-arachidonoyl gamma aminobutyric acid from arachidonoyl CoA and the respective amino acids. The identities of the arachidonoyl amino acid products were verified by mass spectral fragmentation pattern analysis. The synthetic reactions exhibited Michaelis-Menten kinetics and continued favorably at physiologic temperature and pH. Spectral data indicate that both cytochrome c protein structure and a +3 heme iron oxidation state are required for the reaction mechanism to proceed optimally. Reactions designed to catalyze the formation of N-arachidonoyl dopamine were not efficient due to the rapid oxidation of dopamine substrate by hydrogen peroxide, consuming both reactants. Finally, under standard assay conditions, arachidonoyl CoA and ethanolamine were found to react spontaneously to form anandamide, independent of cytochrome c and hydrogen peroxide. Accordingly, it was not possible to demonstrate a potential role for cytochrome c in the biosynthetic mechanism for either arachidonoyl dopamine or anandamide. However, the ability of cytochrome c to effectively catalyze the formation of N-arachidonoyl serine, N-arachidonoyl alanine, and N-arachidonoyl gamma aminobutyric acid in vitro highlights its potential role for the generation of these lipid messengers in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prostaglandins.2009.08.001 | DOI Listing |
J Proteome Res
December 2024
Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), 20 Ximianqiao Rd, Chengdu, Sichuan Province 610041, China.
High-altitude exposure can adversely affect neurocognitive functions; however, the underlying mechanisms remain elusive. Why and how does high-altitude exposure impair neurocognitive functions, particularly sleep? This study seeks to identify the molecular markers and mechanisms involved, with the goal of forming prevention and mitigation strategies for altitude sickness. Using serum proteomics and metabolomics, we analyzed blood samples from 23 Han Chinese plain dwellers before and after six months of high-altitude work in Tibet.
View Article and Find Full Text PDFNeurochem Res
November 2024
Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond traditional animal models. In this study, we report on the identification and characterization of a putative fatty acid amide hydrolase (FAAH) in the medicinal leech, Hirudo verbana.
View Article and Find Full Text PDFFood Funct
July 2024
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
Sci Rep
July 2024
Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450000, China.
Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA.
View Article and Find Full Text PDFFood Chem
October 2024
Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, Cagliari 09123, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!