Unity vs. diversity of neuropathic pain mechanisms: Allodynia and hyperalgesia in rats selected for heritable predisposition to spontaneous pain.

Pain

Dept. Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: November 2009

Do contrasting neuropathic pain diagnoses share common pathophysiological mechanisms? Selective breeding was used to derive rat lines with a common genetic background but a striking difference in the degree of spontaneous pain behavior expressed in the neuroma model of neuropathic pain (HA rats (high autotomy) and LA rats (low autotomy)). The contrasting pain phenotype in these lines is attributable to allelic differences at a small number of genetic loci. Here we show that HA and LA rats also differ in their nocifensive response to applied stimuli in the Chung (spinal nerve ligation, SNL) model of neuropathic pain. This includes tactile allodynia and hyperalgesia, and heat allodynia. The degree of hypersensibility varied with sex, age at the time of nerve injury, and the extent of the nerve lesion. F1 crosses of HA and LA rats and inbred Lewis rats showed low levels of autotomy but variable levels of hypersensibility to applied stimuli. Results indicate that alleles which predispose to spontaneous neuropathic pain also predispose to stimulus-evoked pain (allodynia and hyperalgesia). This, in turn, suggests that despite contrasting etiology and behavioral endpoints, pain phenotype in the neuroma and the SNL models shares common pathophysiological mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2009.07.020DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
20
allodynia hyperalgesia
12
pain
10
spontaneous pain
8
common pathophysiological
8
model neuropathic
8
rats low
8
pain phenotype
8
applied stimuli
8
rats
6

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

The Putative Antidiabetic Effect of on Diabetes Mellitus.

Int J Mol Sci

January 2025

Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece.

Diabetes mellitus (DM), a global disease that significantly impacts public health, has become increasingly common over time. In this review, we aim to determine the potential benefits of St. John's Wort (SJW) as an adjunct therapy for DM.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!