Spiropiperidine naphthyridinone inhibitors of Staphylococcus aureus and Escherichia coli FabI have been prepared. Compounds 14a and 14c were identified as having sub-nanomolar E. coli FabI activity and are among the most potent FabI inhibitors yet described. The structural model of 14a bound to E. coli FabI is shown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.07.129DOI Listing

Publication Analysis

Top Keywords

coli fabi
12
fabi
5
spiro-naphthyridinone piperidines
4
piperidines inhibitors
4
inhibitors aureus
4
coli
4
aureus coli
4
coli enoyl-acp
4
enoyl-acp reductase
4
reductase fabi
4

Similar Publications

The low enoyl-acyl carrier protein reductase activity of FabI2 is responsible for the high unsaturated fatty acid composition in Sinorhizobium meliloti.

BMC Microbiol

December 2024

Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: Sinorhizobium meliloti is noted for its exceptional capacity to produce unsaturated fatty acids (UFAs). Earlier studies have indicated that S. meliloti primarily employs the FabA-FabB pathway for UFA synthesis, however, the mechanisms remain elusive.

View Article and Find Full Text PDF

All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB.

View Article and Find Full Text PDF

In vitro and in vivo enhancement effect of glabridin on the antibacterial activity of colistin, against multidrug resistant Escherichia coli strains.

Phytomedicine

July 2024

Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

Background: The increase in antimicrobial resistance leads to complications in treatments, prolonged hospitalization, and increased mortality. Glabridin (GLA) is a hydroxyisoflavan from Glycyrrhiza glabra L. that exhibits multiple pharmacological activities.

View Article and Find Full Text PDF

Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the shell equipped with double inner and outer bilayers.

View Article and Find Full Text PDF

Inverted fatty acid β-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid β-oxidation by engineered strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!