Cellular distribution of the nicotinic acetylcholine receptor alpha7 subunit in rat hippocampus.

Neurosci Res

Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.

Published: November 2009

The hippocampus is a region of the mammalian brain that has been extensively studied due to its role in many forms of memory. To better understand hippocampal function, significant attention has focused upon the cellular distribution of ligand-gated ion channels. Despite strong cholinergic innervation from the basal forebrain and a dense expression of nicotinic acetylchoine receptors (nAChRs), the cellular distribution of subunits forming these receptors has received little attention. We used organotypic hippocampal slice cultures (OHSCs) to study native alpha7 subunits, which, unlike other nAChR subunits, form a homomeric receptor. Cell-surface biotinylation, cross-linking of surface proteins, and sub-cellular fractionation all revealed a very limited presence of the subunit at the plasma membrane. In contrast, subunits of other receptors displayed significant surface expression. Notably, subunits in adult hippocampal tissue were distributed in a fashion similar to that observed in OHSCs. To monitor alpha7 subunits contained in functional nAChRs, a colourimetric assay using alpha-bungarotoxin (a specific alpha7 nAChR antagonist) was developed, and revealed a majority of binding at the cell surface. To change alpha7 subunit distribution, OHSCs were treated with compounds known to affect other ionotropic receptors-insulin, genistein, and elevated external K(+); however, neither subunit surface expression nor antagonist binding was affected. Our data reveal that hippocampal neurons possess a large internal population of alpha7 subunits under basal conditions, which persists during stimuli affecting tyrosine phosphorylation or neuronal activity. The nature of the internal pool of alpha7 subunits remains to be determined, but should have important implications for hippocampal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2009.08.003DOI Listing

Publication Analysis

Top Keywords

alpha7 subunits
16
cellular distribution
12
alpha7 subunit
8
subunits
8
surface expression
8
alpha7
7
hippocampal
5
distribution nicotinic
4
nicotinic acetylcholine
4
acetylcholine receptor
4

Similar Publications

Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.

View Article and Find Full Text PDF

Human α10 nicotinic acetylcholine receptor subunits assemble to form functional receptors.

J Biol Chem

January 2025

School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.

View Article and Find Full Text PDF

Sinomenine modulates the metabolic reprogramming induced by sepsis via CHRNA7.

Life Sci

January 2025

State Key Laboratory of Natural Medicines, School of life science and technology, China Pharmaceutical University, Nanjing 211000, PR China. Electronic address:

Background And Purpose: Sepsis is a condition capable of causing systemic inflammation and metabolic reprogramming. Previous studies have shown that sinomenine (SIN) can mitigate sepsis by reducing inflammation, while the effect on metabolic reprogramming is unclear. The aim of this study is to investigate the function of SIN in metabolic reprogramming in sepsis.

View Article and Find Full Text PDF

Previous studies have shown that the combined effect of fetal hypoxia and maternal stress hormones predetermines tendency to nicotine addiction in adulthood. This study in rats aimed to investigate the effect of prenatal severe hypoxia (PSH) on acetylcholine metabolism in the developing brain, as well as on expression of acetylcholine receptors and in both the developing brain and adult brain structures following nicotine consumption. In the developing brain of PSH rats, no changes were found in the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) or disturbances in the acetylcholine levels.

View Article and Find Full Text PDF

Mechanism of NACHO-mediated assembly of pentameric ligand-gated ion channels.

bioRxiv

November 2024

MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.

Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology. This diverse protein family mediates the ionotropic signals triggered by major neurotransmitters and includes γ-aminobutyric acid receptors (GABARs) and acetylcholine receptors (nAChRs). Receptor function is fine-tuned by a myriad of endogenous and pharmacological modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!