Direct simultaneous electrochemical determination of glutathione (GSH) and glutathione disulfide (GSSG) has been presented using a nanoscale copper hydroxide carbon ionic liquid composite electrode. To the best of our knowledge, this is the first report on the simultaneous determination of these two biologically important compounds based on their direct electrochemical oxidation. Incorporation of copper(II) hydroxide nanostructures in the composite electrode results in complexation of Cu(II) with the thiol group of GSH and leads to a significant decrease in GSH oxidation overpotential, while an anodic peak corresponding to the direct oxidation of GSSG as the product of GSH oxidation is observed at higher overvoltages. Low detection limits of 30 nM for GSH and 15 nM for GSSG were achieved based on a signal-to-noise ratio of 3. The proposed method is free from interference of cysteine, homocysteine, ascorbic acid (AA), and uric acid (UA). No electrode surface fouling was observed during successive scans. Stability, high sensitivity, and low detection limits made the proposed electrode applicable for the analysis of biological fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac900501jDOI Listing

Publication Analysis

Top Keywords

simultaneous electrochemical
8
electrochemical determination
8
determination glutathione
8
glutathione disulfide
8
nanoscale copper
8
copper hydroxide
8
carbon ionic
8
ionic liquid
8
composite electrode
8
gsh oxidation
8

Similar Publications

This work presents an optimization of the construction, treatment, and activation of 3D-printed electrochemical sensors (E-3D). For this, was used a 2-full factorial design examining three key variables at two levels: electrode height, electrode diameter, and printing speed. Moreover, it evaluates various physical, chemical, and electrochemical methods to treat and activate the E-3D surface.

View Article and Find Full Text PDF

Carbon-doped bimetallic oxide nanoflakes for simultaneous electrochemical analysis of ascorbic acid, uric acid, and acetaminophen in sweat.

Anal Methods

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Non-invasive continuous detection using tears or sweat as substitutes for blood samples has become an emerging method for real-time monitoring of human health. However, its development is limited by the low sample volume and low level of analytes. The simultaneous determination of multi-analytes with highly sensitive electrochemical sensing platforms has undoubtedly resulted in breakthrough innovations.

View Article and Find Full Text PDF

Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared.

View Article and Find Full Text PDF

Industrial production of hydrogen peroxide (HO) is energy-intensive and generates unwanted byproducts. Herein, an alternative production strategies of HO are demonstrated in a Zn-air and a photoelectrochemical cell. Employing an optimally produced reduced graphene oxide (rGO) electrocatalyst@air-cathode, an impressive power density of 320 Wm (geo = geometric area) is achieved along with a high HO production rate of 3.

View Article and Find Full Text PDF

Autonomous Self-Healing Magnetoelectric I-Skin from Self-Bonded Deep Eutectic Polymer.

Small Methods

January 2025

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

Next-generation ionic skin (i-skin) should be self-healing and self-powered, promoting its development toward lightweight, miniaturization, compact, and portable designs. Previously reported self-powered i-skin mostly either lack the ability to self-repair damaged parts or only have self-healing capabilities some components, falling short of achieving complete device self-healability. In this work, a self-bonding strategy is presented to obtain an all-polymerizable deep eutectic solvent (PDES) magnetoelectric i-skin (MIS) that simultaneously achieves self-powering and full-device autonomous self-healability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!