New clinico-genetic classification of trichothiodystrophy.

Am J Med Genet A

Department of Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Pellegrin University Hospitals, Bordeaux, France.

Published: September 2009

Trichothiodystrophy (TTD) is a congenital hair dysplasia with autosomal recessive transmission. Cross banding pattern under polarized light plus trichoschisis and a low sulfur content of hair shafts define the disorder, which is associated with variable and neuroectodermal symptoms. So-called photosensitive forms of TTD (with low level of in vitro UV-induced DNA repair, not constantly associated with marked clinical photosensitivity) are caused by mutations in genes encoding subunits of the transcription/repair factor IIH (TFIIH). Ten percentage of nonphotosensitive patients are known to have TTDN1 mutations, the specific role of which is unknown. We studied nine patients recruited at our institution and reviewed 79 with molecular analysis out of 122 TTD patients reported in literature with the aim to collect systematically the clinical findings in TTD patients and establish genotype-phenotype correlations. The frequency of congenital ichthyosis, collodion-baby type, was significantly higher in the TFIIH mutated group. Hypogonadism was significantly more frequent in the non-photosensitive group. There was no statistical difference regarding osseous anomalies. Mutations in TFIIH sub-units leading to abnormal expression in genes involved in epidermal differentiation could explain the particular dermatological changes seen in photosensitive cases of TTD. We suggest a new clinico-genetic classification of TTD, which may help clinicians confused by the current acronyms used (IBIDS, PIBIDS...). Understanding the TTD ichthyotic phenotype could lead to therapeutic advances in the management of TTD and other types of ichthyoses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.32902DOI Listing

Publication Analysis

Top Keywords

clinico-genetic classification
8
ttd
8
ttd patients
8
classification trichothiodystrophy
4
trichothiodystrophy trichothiodystrophy
4
trichothiodystrophy ttd
4
ttd congenital
4
congenital hair
4
hair dysplasia
4
dysplasia autosomal
4

Similar Publications

The 2022 International Consensus Classification (ICC) recategorized myeloid neoplasms based on recent advances in the understanding of the biology of hematologic malignancies, in which myelodysplastic syndrome (MDS) with blasts of 10%-19% is classified as MDS/acute myeloid leukemia (AML), MDS with mutated SF3B1, irrespective of the number of ring sideroblasts, as MDS-SF3B1, and those with multi-hit TP53 mutations as MDS with mutated TP53. In the analysis of 716 patients with MDS diagnosed according to the 2016 WHO classification, we found that 75.3% of patients remained in the MDS group based on the ICC, while 24.

View Article and Find Full Text PDF

Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

Genome Biol

June 2015

Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Kerpener Strasse 62, D-50924, Cologne, Germany.

Background: Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.

Results: We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays.

View Article and Find Full Text PDF

Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology.

Hum Genet

June 2015

INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06 UMR_S1127, EPHE, Institut du Cerveau et de la Moelle épinière, CHU Pitié-Salpêtrière, 47 bd de l'Hôpital, 75013, Paris, France.

Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now.

View Article and Find Full Text PDF

Peripheral nerve involvement in hereditary cerebellar and multisystem degenerative disorders.

Handb Clin Neurol

April 2014

Department of Neurology and Clinical Neurophysiology, University Hospital "Marqués de Valdecilla (IFIMAV)", University of Cantabria and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Santander, Spain. Electronic address:

Hereditary ataxias (HA) encompass an increasing number of degenerative disorders characterized by progressive cerebellar ataxia usually accompanied by extracerebellar semeiology including peripheral nerve involvement. Classically, HA were classified according to their pathological hallmark comprising three main forms: (1) spinal form predominantly with degeneration of spinocerebellar tracts, posterior columns, and pyramidal tracts (Friedreich's ataxia, FA); (2) olivopontocerebellar atrophy (OPCA); and (3) cortical cerebellar atrophy (CCA). In the 1980s Harding proposed a clinico-genetic classification based upon age of onset, modality of transmission, and clinical semeiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!