Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature08394 | DOI Listing |
Environ Microbiol
January 2025
Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany.
Increasing antifungal drug resistance is a major concern associated with human fungal pathogens like Aspergillus fumigatus. Genetic mutation and epimutation mechanisms clearly drive resistance, yet the epitranscriptome remains relatively untested. Here, deletion of the A.
View Article and Find Full Text PDFExp Ther Med
January 2025
Department of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China.
N-methyladenosine (m1A), a methylation of RNA, is gaining attention for its role in diverse biological processes. However, the potential roles of m1A regulatory-mediated methylation modifications in multiple myeloma (MM) remain unclear. The mRNA expression of m1A regulators in normal plasma (NP; n=9) and MM (n=174) bone marrow plasma cells was investigated and the m1A modification patterns of 559 MM samples based on the expression of 10 m1A-related regulatory genes were comprehensively evaluated.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2024
Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!