Electron crystallography is arguably the only electron cryomicroscopy (cryoEM) technique able to deliver an atomic-resolution structure of membrane proteins embedded in the lipid bilayer. In the electron crystallographic structures of the light driven ion pump, bacteriorhodopsin, and the water channel, aquaporin-0, sufficiently high resolution was obtained and both lipid and protein were visualized, modeled, and described in detail. An extensive network of lipid-protein interactions mimicking native membranes is established and maintained in two-dimensional (2D) crystalline vesicles used for structural analysis by electron crystallography. Lipids are tightly integrated into the protein's architecture where they can affect the function, structure, quaternary assembly, and the stability of the membrane protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763990 | PMC |
http://dx.doi.org/10.1016/j.sbi.2009.07.012 | DOI Listing |
Nat Commun
December 2024
Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Kyungbook, Republic of Korea.
Alanine racemase (Alr) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent racemization between L- and D-alanine in bacteria. Owing to the potential interest in targeting Alr for antibacterial drug development, several studies have determined the structures of Alr from different species, proposing models for the reaction mechanism. Insights into its reaction dynamics may be conducive to a better understanding of the Alr reaction mechanism.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
The production of nanoparticles via green methods is a developing study domain due to potential environmental applications. The green synthesis method is very easy, less toxic and eco-friendly when compared to the chemical synthesis method. This study addresses the silver nanoparticle synthesis utilizing the Acorus calamus leaf extract, which was then employed for environmental applications.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China.
Gold nanoparticles (AuNPs) have emerged as promising candidates for cancer therapy due to their unique physicochemical properties and biocompatibility. In this study, we investigate the synthesis, characterization, and therapeutic potential of AuNPs in breast cancer treatment. Further, it establishes a comprehensive understanding of the mechanisms by which AuNPs suppress angiogenesis and breast cancer growth, identifying novel targets and signaling nodes contributing to the anti-tumor effects of AuNPs.
View Article and Find Full Text PDFFEBS J
December 2024
Chemical Sciences Department, Universidad Andres Bello, Santiago, Chile.
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!