Background: Ventilatory muscle endurance training (VMET) involves increasing minute ventilation (V (E)) against a low flow resistance at rest to simulate the hyperpnea of exercise. Ideally, VMET must maintain normocapnia over a wide range of V (E). This can be achieved by providing a constant fresh gas flow to a sequential rebreathing circuit. The challenge to make VMET suitable for home use is to provide a source of constant fresh gas flow to the circuit without resorting to compressed gas.

Methods: Our VMET circuit was based on a commercial sequential gas delivery breathing circuit (Pulmanex Hi-Ox, Viasys Healthcare, Yorba Linda, CA USA). Airflow was provided either by a small battery-driven aquarium air pump or by the entrainment of air down a pressure gradient created by the recoil of a hanging bellows that was charged during each inhalation. In each case, fresh gas flow was adjusted to be just less than resting V (E). Eight subjects then breathed from the circuit for three 10min periods consisting of relaxed breathing, breathing at 20 and then at 40L/min. We monitored V (E), end-tidal PCO2 (PetCO2) and hemoglobin O2 saturation (SpO2).

Results: During hyperpnea at 20 and 40L/min, PetCO2 did not differ significantly from resting levels with either method of supplying fresh gas. SpO2 remained greater than 96% during all tests.

Conclusion: Isocapnic VMET can be reliably accomplished with a simple self-regulating, sequential rebreathing circuit without the use of compressed gas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmed.2009.07.012DOI Listing

Publication Analysis

Top Keywords

fresh gas
16
gas flow
12
breathing circuit
8
ventilatory muscle
8
muscle endurance
8
endurance training
8
training vmet
8
constant fresh
8
sequential rebreathing
8
rebreathing circuit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!