Mutation analysis of the KRAS oncogene is now established as a predictive biomarker in colorectal cancer (CRC). Large prospective clinical trials have shown that only CRCs with wild-type KRAS respond to anti-epidermal growth factor receptor (EGFR) treatment. Therefore, mutation analysis is mandatory before treatment, and reliable benchmarks for the frequency and types of KRAS mutations have to be established for routinely testing large numbers of metastatic CRCs. A thousand and eighteen cases (879 primary tumors and 139 metastases) of metastatic colorectal cancer were analyzed for the KRAS mutational status of codons 12 and 13 of the KRAS gene by genomic sequencing in a routine setting. Results were analyzed separately for specimens derived from primary tumors and metastases. KRAS mutations in codons 12 and 13 were present in 39.3% of all analyzed CRCs. The most frequent types of mutations were glycine to aspartate on codon 12 (p.G12D, 36.0%), glycine to valine on codon 12 (pG12V, 21.8%), and glycine to aspartate on codon 13 (p.G13D, 18.8%). They account for 76.6% of all mutations and prevail in primary tumors and distant metastases, indicating a robustness of the KRAS mutational status during neoplastic dissemination. The frequency of KRAS mutations and the preponderance of three types of mutations in codons 12 and 13 in a large, unselected cohort of metastatic CRC confirm the previous data of small and selected CRC samples. Thus, a mutation frequency of 40% and a cluster of three mutation types (p.G12D, pG12V, and p.G13D) in primaries and metastases can be defined as benchmarks for routine KRAS analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2009.07.010DOI Listing

Publication Analysis

Top Keywords

kras mutations
16
colorectal cancer
12
primary tumors
12
kras
10
metastatic colorectal
8
mutation analysis
8
kras mutational
8
mutational status
8
mutations codons
8
types mutations
8

Similar Publications

Design, Structure Optimization, and Preclinical Characterization of JAB-21822, a Covalent Inhibitor of KRAS.

J Med Chem

January 2025

Chief executive officer, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China.

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutation is commonly found in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). Inhibitors that covalently modify the mutated codon 12 cysteine have completed proof-of-concept studies in the clinic. Here, we describe structure-based design and cocrystal-aided drug optimization of a series of compounds with the 1,8-naphthyridine-3-carbonitrile scaffold.

View Article and Find Full Text PDF

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

Background: The mutation of the KRAS (Kirsten rat sarcoma virus) gene is a prevalent genetic alteration in metastatic colorectal cancer (mCRC). According to previous research, this mutation significantly affects clinical outcomes and quality of life (QOL). This research investigated the association between KRAS mutant status and various aspects of QOL in mCRC patients.

View Article and Find Full Text PDF

Background: KRAS mutations in rectal cancer are associated with a conflict prognosis. This study aimed to compare clinicopathological outcomes of patients and tumor criteria between wKRAS and mKRAS, as well as overall survival in the two groups.

Methods: The research retrospectively analyzed a cohort of 193 patients who received surgical treatment for rectal adenocarcinoma between May 2015 and December 2023.

View Article and Find Full Text PDF

Introduction: Around 85% of non-small cell lung cancers (NSCLCs) are diagnosed at an advanced stage (IIIB to IV), where therapeutic options depend on molecular analysis. However, diagnostic material for molecular testing is often represented by cytological samples which are generally scarce and span a wide range of preparation types. Thus, the primary objective is to efficiently manage materials for molecular profiling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!