A 50MHz array-based imaging system was used to obtain high-resolution images of the ear and auditory system. This previously described custom built imaging system (Brown et al. 2004a, 2004b; Brown and Lockwood 2005) is capable of 50 microm axial resolution, and lateral resolution varying from 80 microm to 130 microm over a 5.12 mm scan depth. The imaging system is based on a 2mm diameter, seven-element equal-area annular array, and a digital beamformer that uses high-speed field programmable gate arrays (FPGAs). The images produced by this system have shown far superior depth of field compared with commercially available single-element systems. Ex vivo, three-dimensional (3-D) images were obtained of human cadaveric tissues including the ossicles (stapes, incus, malleus) and the tympanic membrane. In addition, two-dimensional (2-D) images were obtained of an intact cochlea by imaging through the round window membrane. The basilar membrane inside the cochlea could clearly be visualized. These images demonstrate that high-frequency ultrasound imaging of the middle and inner ear can provide valuable diagnostic information using minimally invasive techniques that could potentially be implemented in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.05.021DOI Listing

Publication Analysis

Top Keywords

imaging system
12
ultrasound imaging
8
auditory system
8
imaging
6
system
6
images
5
high-frequency vivo
4
vivo ultrasound
4
imaging auditory
4
system 50mhz
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!