Background: In animal models, ischemia reperfusion (IR) injury triggers membrane lipid degradation and accumulation of lipoxidative exacerbations in neurovascular unit, leading to blood brain barrier (BBB) damage and neurologic deficits. In this study, we investigated whether impeding membrane lipid breakdown by inhibiting secretory phospholipase A2 (sPLA2) activity reduces BBB leakage, leading to neuroprotection and functional recovery.

Methods: Focal cerebral IR injury was induced by middle cerebral artery occlusion (MCAO) in adult male rats. A sPLA2 inhibitor, 7,7-dimethyleicosadienoic acid (DEDA), was administered following IR injury. DEDA-treated animals were compared with vehicle-treated in terms of BBB leakage, edema, infarct volume, and neurological deficit. Membrane lipid degradation and the expression/activity of sPLA2 were also assessed. The role of one of the sPLA2 products, arachidonic acid (AA), on the morphology of the differentiated neuronal cell PC12 was examined by light microscopy.

Results: Treatment with DEDA after IR injury not only reduced BBB leakage but also decreased infarct volume and improved neurologic function. The treatment attenuated both the activity of sPLA2 and the levels of sPLA2-derived oxidized products. The metabolites of lipid oxidation/peroxidation, including the protein carbonyl, were reduced as well. The treatment also restored the levels of glutathione, indicating attenuation of oxidative stress. In vitro treatment of PC12 cells with DEDA did not restore the AA-mediated inhibition of neurite formation and the levels of glutathione, indicating that effect of DEDA is up stream to AA release.

Conclusion: sPLA2-derived oxidative products contribute to significant neurovascular damage, and treatment with sPLA2 inhibitor DEDA ameliorates secondary injury by reducing exacerbations from lipoxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739168PMC
http://dx.doi.org/10.1186/1742-2094-6-21DOI Listing

Publication Analysis

Top Keywords

membrane lipid
12
bbb leakage
12
secretory phospholipase
8
lipid degradation
8
spla2 inhibitor
8
infarct volume
8
levels glutathione
8
glutathione indicating
8
injury
6
spla2
6

Similar Publications

Small and Versatile Cyclotides as Anti-infective Agents.

ACS Infect Dis

January 2025

Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil.

Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability.

View Article and Find Full Text PDF

Electroporation and electrofusion are efficient methods, which have been widely used in different areas of biotechnology and medicine. Pulse strength and width, as an external condition, play an important role in the process of these methods. However, comparatively little work has been done to explore the effects of pulsed electric field parameters on electroporation and electrofusion.

View Article and Find Full Text PDF

Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.

View Article and Find Full Text PDF

Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.

View Article and Find Full Text PDF

During the blood coagulation cascade, coagulation factor VIII (FVIII) is activated by thrombin to form activated factor VIII (FVIIIa). FVIIIa associates with platelet surfaces at the site of vascular damage to form an intrinsic tenase complex with activated factor IX. A working model for FVIII membrane binding involves the association of positively charged FVIII residues with negatively charged lipid headgroups and the burial of hydrophobic residues into the membrane interior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!