Experimental and theoretical results are presented on the electronic structure of molybdenum tris[1,2-bis(trifluoromethyl) ethane-1,2-dithiolene] (Mo(tfd)(3)), a high electron-affinity organometallic complex that constitutes a promising candidate as a p-dopant for organic molecular semiconductors. The electron affinity of the compound, determined via inverse photoemission spectroscopy, is 5.6 eV, which is 0.4 eV larger than that of the commonly used p-dopant F(4)-TCNQ. The LUMO level of Mo(tfd)(3) is calculated to be delocalized over the whole molecule, which is expected to lead to low pinning potential. Efficient p-doping of a standard hole transport material (alpha-NPD) is demonstrated via measurements of Fermi level shifts and enhanced conductivity in alpha-NPD:1% Mo(tfd)(3). Rutherford backscattering measurements show good stability of the three-dimensional Mo(tfd)(3) molecule in the host matrix with respect to diffusion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja904939gDOI Listing

Publication Analysis

Top Keywords

high electron-affinity
8
electron-affinity molybdenum
4
molybdenum dithiolene
4
dithiolene complex
4
complex p-dope
4
p-dope hole-transport
4
hole-transport layers
4
layers experimental
4
experimental theoretical
4
theoretical presented
4

Similar Publications

Copper-based catalysts are the choice for producing multi-carbon products (C2+) during CO2 electroreduction (CO2RR), where the Cu0Cuδ+ pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in-situ reconstruction strategy to create dynamically stable Cu0Cu0.

View Article and Find Full Text PDF

Phosphorus-based heterojunction tunnel field-effect transistors: from atomic insights to circuit renovations.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.

Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.

View Article and Find Full Text PDF

The demand for innovative synthetic polymers with improved properties is high, but their structural complexity and vast design space hinder rapid discovery. Machine learning-guided molecular design is a promising approach to accelerate polymer discovery. However, the scarcity of labeled polymer data and the complex hierarchical structure of synthetic polymers make generative design particularly challenging.

View Article and Find Full Text PDF

Incorporating carbon-based fillers into triboelectric nanogenerators, TENGs, is a compelling strategy to enhance the power output. However, the lack of systematic studies comparing various carbon fillers and their impact on tribopositive contact layers necessitates further research. To address these concerns, various carbon fillers (including buckminsterfullerene (C), graphene oxide (GO), reduced graphene oxide (rGO), multi-wall carbon nanotube (MWCNT), and super activated carbon (SAC)) with distinct structural and electrical properties are mixed with polyvinyl alcohol, PVA, to form PVA-carbon composites and used as tribopositive layers in the contact-separation of TENGs.

View Article and Find Full Text PDF

Hydrogen/Electron Amphiphilic Bi-Functional Water Molecular Inactivator-Assisted Interface Stabilization in Highly Reversible Zn Metal Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

Article Synopsis
  • A continuous hydrogen-bond-network in aqueous electrolytes can cause unwanted hydrogen transfer and side reactions in aqueous zinc metal batteries (AZMBs), which complicates their efficiency.
  • The introduction of the 1,5-Pentanediol (PD) molecule stabilizes the electrode/electrolyte interface by breaking up hydrogen-bonding in water, enhancing electron acceptance, and promoting favorable interactions with the electrode material.
  • This leads to improved zinc deposition, formation of a protective solid-electrolyte interphase (SEI), and a significant extension of cycling performance, with Zn//Zn cells exhibiting over 5600 hours of stable operation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!