17-AAG, the first-generation clinical Hsp90 inhibitor, exhibits promising antitumor activity in clinical studies, but is limited by poor solubility and hepatotoxicity. To pursue compounds with better biopharmaceutical properties, we have developed a series of fully synthetic orally bioavailable inhibitors of Hsp90. Here, we report that 17-AAG and other ansamycin derivatives are inactive in P-gp and/or MRP-1 expressing cell lines and sensitivity could be restored by coadministration of P-gp or MRP inhibitors. In contrast, the synthetic Hsp90 inhibitor, BIIB021 was active in these models. Accordingly, BIIB021 was considerably more active than 17-AAG against adrenocortical carcinoma, a tumor that naturally expresses P-gp, both in vitro and in vivo. This efflux pump-mediated resistance is manifested in both cytotoxicity assays and measurements of target inhibition, such as client protein degradation. Other than this, the cytotoxic activity of BIIB021 was also not influenced by loss of NQO1 or Bcl-2 overexpression, molecular lesions that do not prevent client loss but are nonetheless associated with reduced cell killing by 17-AAG. Our results indicate that the activity of 17-AAG and other ansamycins may be curtailed in tumors that have upregulated efflux pumps or antiapoptotic proteins or other genetic alterations. These data indicate that the new generation of synthetic anti-Hsp90 drugs, exemplified by BIIB021 that is currently undergoing Phase II testing, may have broader application against tumors with acquired multidrug resistance or tumors located in organs protected by MDR proteins, such as the adrenal glands, brain and testis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.24825DOI Listing

Publication Analysis

Top Keywords

hsp90 inhibitor
12
synthetic hsp90
8
application tumors
8
tumors acquired
8
acquired multidrug
8
multidrug resistance
8
biib021
5
17-aag
5
biib021 synthetic
4
hsp90
4

Similar Publications

Effects of in vitro cytochalasin D and hypoxia on mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity in air-breathing fish heart.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:

The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Identification of a New Pentafluorosulfanyl-Substituted Chalcone with Activity Against Hepatoma and Human Parasites.

Pharmaceuticals (Basel)

January 2025

Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.

Background/objectives: New drugs are required for the treatment of liver cancers and protozoal parasite infections. Analogs of the known anticancer active and antileishmanial 2',4',6'-trimethoxychalcone SU086 were prepared and investigated.

Methods: The chalcones were prepared according to the Claisen-Schmidt condensation protocol and analyzed.

View Article and Find Full Text PDF

The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using C-NMR, H-NMR, and mass spectrometry. All the semi-synthesized compounds obtained using the Multi-Target-Directed Ligand (MTDL) strategy, when evaluated as anti-settlement agents against barnacles, showed promising activity.

View Article and Find Full Text PDF

Combined therapies with Heat Shock Protein 90 (HSP90) inhibitors and Heat Shock Protein 70 (HSP70) inducers are gaining significant interest in cancer and cardiovascular research. Here, we tested the hypothesis that HSP90 inhibitors and HSP70 inducers, together, can block the development of pulmonary fibrosis. We exposed New Zealand White Rabbits to hydrochloric acid (HCl, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!