There are several equations to predict maximum oxygen consumption (VO2max) from ergometric test variables on different ergometers. However, a similar equation using ventilatory thresholds of ergospirometry in a submaximal test on a cycle ergometer is unavailable. The aim of the present study was to assess the accuracy of VO2max prediction models based on indicators of submaximal effort. Accordingly, 4,640 healthy, nonathlete women ages 20 years and older volunteered to be tested on a cycle ergometer using a maximum incremental protocol. The subjects were randomly assigned to 2 groups: group A (estimation) and group B (validation). From the independent variables of weight in kilograms, the second workload threshold (WT2), and heart rate of the second threshold (HRT2), it was possible to build a multiple linear regression model to predict maximal oxygen consumption (VO2max = 40.302 - 0.497 [Weight] - 0.001 [HRT2] + 0.239 [WT2] in mL O2/kg/min(-1); r = 0.995 and standard error of the estimate [SEE] = 0.68 mL O2/kg/min(-1)). The cross-validation method was used in group B with group A serving as the basis for building the model and the validation dataset. The results showed that, in healthy nonathlete women, it is possible to predict VO2max with a minimum of error (SEE = 1.00%) from submaximal indicators obtained in an incremental test.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0b013e3181b45c49DOI Listing

Publication Analysis

Top Keywords

oxygen consumption
8
consumption vo2max
8
cycle ergometer
8
healthy nonathlete
8
nonathlete women
8
prediction vo2max
4
vo2max cycle
4
cycle ergometry
4
ergometry based
4
submaximal
4

Similar Publications

The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass.

View Article and Find Full Text PDF

As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.

View Article and Find Full Text PDF

Widespread occurrence and relevance of phosphate storage in foraminifera.

Nature

January 2025

SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.

View Article and Find Full Text PDF

Oxidative Stress Early After Hematopoietic Stem Cell Transplant.

Transplant Cell Ther

January 2025

Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH.

Background: HSCT conditioning regimens cause massive lysis of hematopoietic cells with release of toxic intracellular molecules into the circulation.

Objectives: To describe the response to oxidative stress early after hemopoietic stem cell transplantation (HSCT) and assess the association of early oxidative stress with later transplant outcomes.

Study Design: Key components of in the body's physiological response to oxidative stress were studied in a cohort of 122 consecutive pediatric allogeneic HSCT recipients.

View Article and Find Full Text PDF

We tested the hypothesis that power at maximal metabolic steady state is similar between fitness matched men and women. Eighteen participants (9 men, 9 women) performed a cycling graded exercise test for maximal oxygen consumption (V̇O). Men and women were matched for V̇O normalized to fat free mass (FFM), which was 50.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!