Upon activation, NF-kappaB translocates into the nucleus and initiates biological events. This NF-kappaB signalling is mainly regulated by the protein kinase IKKbeta. Early in this signalling pathway, IKKbeta is phosphorylated for activation by several factors, such as pro-inflammatory cytokines and the Tax oncoprotein of HTLV-1. In cells infected by HTLV-1, IKKbeta is persistently phosphorylated and conjugated with monoubiquitin due to Tax expression. Although this Tax-induced monoubiquitination appears to be an important regulation system for IKKbeta, how the monoubiquitination occurs is unknown and its role in NF-kappaB signalling is still unclear. Here, we show that an E3-ubiquitin ligase Ro52 interacts weakly with wild-type IKKbeta but strongly with a phosphomimetic mutant IKKbeta to conjugate monoubiquitin in cooperation with an E2-ubiquitin-conjugating enzyme UbcH5B. These results suggest that the Tax-induced phosphorylation of IKKbeta causes an interaction with Ro52 for the subsequent monoubiquitination. NF-kappaB reporter assays have shown that the IKKbeta activity is suppressed by wild-type Ro52, but not by its inactive mutant. In addition, monoubiquitin fusion of IKKbeta reduced its activity for NF-kappaB signalling. We also found that Ro52 dramatically reduces the level of Tax. These results suggest that Ro52 down-regulates Tax-induced NF-kappaB signalling by monoubiquitinating IKKbeta and by reducing the level of Tax.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917061PMC
http://dx.doi.org/10.1093/jb/mvp127DOI Listing

Publication Analysis

Top Keywords

nf-kappab signalling
16
ikkbeta
10
level tax
8
signalling
6
nf-kappab
6
ro52
5
ro52-mediated monoubiquitination
4
monoubiquitination ikk{beta}
4
ikk{beta} down-regulates
4
down-regulates nf-{kappa}b
4

Similar Publications

Background/purpose: Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 (NLRC5) plays a regulatory role in innate and adaptive immunity. However, its role in periodontitis remains unclear. This study investigated the effects of NLRC5 on periodontitis and the underlying mechanism.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Ethanol extract of lymphanax with gypenoside 17 and ginsenoside Re exerts anti-inflammatory properties by targeting the AKT/NF-κB pathway.

J Ginseng Res

January 2025

Department of Integrative Biotechnology, Biomedical Institute for Convergence of SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea.

Background: Ginseng is processed into several types such as white ginseng, red ginseng, and black ginseng, according to the processing methods such as drying, steaming, and heating. These processing conditions can change the portion of the useful ingredients. Recently, new processing method was established to develop 'lymphanax', an aged fresh white ginseng prepared under anaerobic condition.

View Article and Find Full Text PDF

Butein, a rare chalcone found in the toxic plant , has been shown to regulate glucose homeostasis via inhibition of the nuclear factor kappa-B kinase subunit beta (IKKβ)/nuclear factor kappa B (NF-κB) pathway in the brain. Here, we investigated whether the nonpoisonous plant could be a source of butein as a potential treatment for type 2 diabetes (T2D). In mice fed a high-fat diet (HFD) to induce glucose intolerance, an oral petal extract improved glucose tolerance at doses of 3.

View Article and Find Full Text PDF

Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!