For distributed detection in a wireless sensor network, sensors arrive at decisions about a specific event that are then sent to a central fusion center that makes global inference about the event. For such systems, the determination of the decision thresholds for local sensors is an essential task. In this paper, we study the distributed detection problem and evaluate the sensor thresholds by formulating and solving a multiobjective optimization problem, where the objectives are to minimize the probability of error and the total energy consumption of the network. The problem is investigated and solved for two types of fusion schemes: 1) parallel decision fusion and 2) serial decision fusion. The Pareto optimal solutions are obtained using two different multiobjective optimization techniques. The normal boundary intersection (NBI) method converts the multiobjective problem into a number of single objective-constrained subproblems, where each subproblem can be solved with appropriate optimization methods and nondominating sorting genetic algorithm-II (NSGA-II), which is a multiobjective evolutionary algorithm. In our simulations, NBI yielded better and evenly distributed Pareto optimal solutions in a shorter time as compared with NSGA-II. The simulation results show that, instead of only minimizing the probability of error, multiobjective optimization provides a number of design alternatives, which achieve significant energy savings at the cost of slightly increasing the best achievable decision error probability. The simulation results also show that the parallel fusion model achieves better error probability, but the serial fusion model is more efficient in terms of energy consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TSMCB.2009.2026633 | DOI Listing |
iScience
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Industrial Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
Despite the extensive literature revealing various core structures that can enhance the impact resistance of composite panels, a comparative study illustrating the difference in performance of the various cores under same loading conditions is missing. The aim of this study is to determine the optimal core structure and design in terms of energy absorption under low-velocity impact using both numerical simulations and experimental testing for validation. Response surface analysis was used to design the experiments and analyse the panel's behaviour.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Artificial Intelligence Research and Optimisation, Torrens University, Brisbane, QLD, 4006, QLD 4006, Austral, Australia.
This paper presents the Multi-Objective Ant Nesting Algorithm (MOANA), a novel extension of the Ant Nesting Algorithm (ANA), specifically designed to address multi-objective optimization problems (MOPs). MOANA incorporates adaptive mechanisms, such as deposition weight parameters, to balance exploration and exploitation, while a polynomial mutation strategy ensures diverse and high-quality solutions. The algorithm is evaluated on standard benchmark datasets, including ZDT functions and the IEEE Congress on Evolutionary Computation (CEC) 2019 multi-modal benchmarks.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
This research presents a method based on deep learning for the reverse design of sound-absorbing structures. Traditional methods require time-consuming individual numerical simulations followed by cumbersome calculations, whereas the deep learning design method significantly simplifies the design process, achieving efficient and rapid design objectives. By utilizing deep neural networks, a mapping relationship between structural parameters and the sound absorption coefficient curve is established.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China.
Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties, they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity, and local optimum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!