Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed on predatory birds and mammals; insectivores have rarely been studied. We investigated the exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- and second-generation anticoagulant rodenticides (FGARs and SGARs) using high performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid-chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR concentrations detected by HPLC was 3-13% per compound, 23% overall. LCMS identified much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability to detect low-level contamination. The overall proportion of hedgehogs with LCMS-detected residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests that hitherto exposure of non-targets is likely to have been under-estimated using HPLC techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2009.07.017 | DOI Listing |
Biometrics
January 2025
Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore.
Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan-si, Gyeonggi-do, Republic of Korea.
Dose adjustments of direct-acting oral anticoagulants (DOACs) for atrial fibrillation are based on pivotal clinical trials assessing their effectiveness and safety in controlled settings. However, the appropriateness of these dosing strategies in real-world practice is uncertain. The purpose of this study is to compare the effectiveness and safety of dose-specific DOACs with those of warfarin.
View Article and Find Full Text PDFBackground: Anticoagulant rodenticides (ARs) are a very effective tool to control rodent pest populations. Nevertheless, AR resistance has been documented worldwide. ARs block the cycle of vitamin K, leading to the death of the animal by internal bleeding: mutations in Vkorc1 gene can cause resistance.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Pharmacy, The People's Hospital of Hezhou, Hezhou, China.
Rationale: Warfarin is the most commonly used drug in patients with mechanical valve replacement. Acute liver damage after warfarin is rare but potentially harmful. We present a case of warfarin-induced gastrointestinal bleeding with liver injury, pharmacy monitoring, and its therapy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany.
Widely used second-generation anticoagulant rodenticides like brodifacoum are classified as persistent, bioaccumulative, and toxic. Widespread exposure of terrestrial and avian non-target species is well-known and recently hepatic anticoagulant rodenticide residues have been detected in wild fish. However, no sufficient data exist to interpret the effects of these findings on fish health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!