A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inferring black carbon concentrations in particulate organic matter by observing pyrene fluorescence losses. | LitMetric

Inferring black carbon concentrations in particulate organic matter by observing pyrene fluorescence losses.

Environ Sci Technol

R.M. Parsons Laboratory, MIT 48-413, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Published: July 2009

Black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, is ubiquitous, participates in diverse environmental processes, and has adverse effects on human health. However, uncertainty persists regarding how accurately the present measurement methods quantify total BC or even defined subportions of the BC continuum. Hence, we sought to improve this situation by developing a new, low-sample manipulation methodology that does not require any oxidative or pyrolytic treatments but rather differentiates BC from other non-BC organic carbon (OC) using its sorbent properties. The procedure, referred to as the pyrene fluorescence loss (PFL) method, infers BC concentrations in particulate organic matter (POM) by observing the decrease in fluorescence from pyrene spiked into aqueous POM suspensions. The method was first tested using diverse materials previously utilized in an international BC method intercomparison study, and then its effectiveness (e.g., sensitivity and geochemical reasonableness) was tested by applying itto sediment and seawater POM samples collected from a coastal area downwind of important BC sources. Parallel evaluation of BC, using the PFL method and CTO-375 procedure, suggested we can characterize the predominant BC in a given sample as (i) thermally recalcitrant and highly sorptive per mass (e.g., soot), (ii) thermally labile and highly sorptive per mass (e.g., char), or (iii) thermally recalcitrant but not highly sorptive (e.g., lignite coal).

Download full-text PDF

Source
http://dx.doi.org/10.1021/es900043cDOI Listing

Publication Analysis

Top Keywords

highly sorptive
12
black carbon
8
concentrations particulate
8
particulate organic
8
organic matter
8
pyrene fluorescence
8
pfl method
8
thermally recalcitrant
8
recalcitrant highly
8
sorptive mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!