Capillary bridge formation and breakage: a test to characterize antiadhesive surfaces.

J Phys Chem B

Laboratoire de Physique des Solides, Université Paris-Sud 11, CNRS, UMR 8502, Orsay, France.

Published: March 2009

In order to characterize very weak adhesive surfaces, we have developed a quantitative test inspired by the Johnson, Kendall, and Roberts adhesion test for soft adhesives, which relies on the formation and then the rupture of a capillary bridge between the surface to be tested and a liquid bath. Both the shape and the kinetics of breakage of the capillary bridge for various coatings put into contact with liquids of various viscosities and surface tensions have been studied. Several pull off regimes can be distinguished. For low pull off velocities, a quasi-static regime is observed, well described by capillary equations and sensitive to the hysteresis of the contact angle of the fluid on the coating. Above a critical pull off velocity that depends on the fluid viscosity, a dynamic regime is observed, characterized by the formation of a flat pancake of fluid on the coating that recedes more slowly than the capillary bridge itself. After the breakage of the capillary bridge, a small drop can remain attached to the surface. The volume of this drop depends on the dynamical regime and is strongly affected by very small differences between the coatings. The aptitude of this test in characterizing very weakly adhesive surfaces is exemplified by a comparison between three different perfluorinated coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp807698sDOI Listing

Publication Analysis

Top Keywords

capillary bridge
20
adhesive surfaces
8
breakage capillary
8
regime observed
8
fluid coating
8
capillary
6
bridge formation
4
formation breakage
4
test
4
breakage test
4

Similar Publications

Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted.

View Article and Find Full Text PDF

Bioinspired self-flowing wood chemical treatment.

Nat Commun

January 2025

Department of Mechanical Engineering, Advanced Materials and Manufacturing Process Institute (AMMPI), University of North Texas, Denton, TX, USA.

Wood has complex composition and structure, which make it difficult to achieve consistent and controllable treatment. A self-flowing process presented for the chemical treatment of wood is inspired by liquid transportation in trees during photosynthesis and tree growth, whereby liquid in the soil is brought through the natural vessels and/or fiber tracheids. In this process, wood lumbers are placed in a tank containing treatment chemicals such as preservatives, fire retardants, or reactive agents.

View Article and Find Full Text PDF

The assembly and position adjustment of micro-components have wide applications in micro-electromechanical systems, wafer packaging and biomedicine. However, current single-finger microgrippers only allow for the pickup and release of micro-components. In the present study, a three-finger capillary microgripper was developed to pick up, release and adjust the position of micro-components.

View Article and Find Full Text PDF

Antibody-mediated rejection (AMR) has been recognized as a significant cause of acute and chronic lung allograft dysfunction after lung transplantation. Some treatments, eculizumab, an anti-complement (C)5 component monoclonal antibody (Mab), seem to have a promising effect in the management of some patients with AMR. We present two patients with acute AMR after lung transplantation who received the anti-C5 Mab therapy.

View Article and Find Full Text PDF

Microstructure and rheology of cellulose bead-filled whey protein isolate oleogels.

Food Chem

December 2024

Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada. Electronic address:

This study investigated the oleogelation of cellulose bead dispersions in a sunflower oil oleogel made with solvent-transferred whey protein isolate. The microstructure and rheology of the mixed gels depended on the ratio of hydrated cellulose beads to proteins (9:1, 8:2, 7:3, and 1:1). Two gel stabilization mechanisms were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!