Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCalpha, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCalpha protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCalpha knockdown increased levels of the cyclin-dependent kinase (CDK) inhibitors p21(Cip1/WAF1) (p21) and p27(Kip1) (p27). Despite the absence of functional phosphatase and tensin homolog (PTEN) protein in Ishikawa cells, PKCalpha knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3beta (GSK-3beta). PKCalpha knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting that PKCalpha regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of Grade 1 endometrioid adenocarcinoma revealed aberrant PKCalpha expression, with foci of elevated PKCalpha staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCalpha signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK-dependent proliferative pathways. Thus, targeting PKCalpha may provide novel therapeutic options in endometrial tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777752 | PMC |
http://dx.doi.org/10.1002/ijc.24633 | DOI Listing |
Mol Oncol
January 2025
Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University Graduate School of Pharmacy, Tokyo, Japan.
The role of the electron transport chain (ETC) in cell proliferation control beyond its crucial function in supporting ATP generation has recently emerged. In this study, we found that, among the four ETC complexes, the complex I (CI)-mediated NAD regeneration is important for cancer cell proliferation. In cancer cells, a decrease in CI activity by RNA interference (RNAi) against NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1) arrested the cell cycle at the G/S phase, accompanying upregulation of p21 cyclin-dependent kinase inhibitor expression.
View Article and Find Full Text PDFMed Mol Morphol
January 2025
Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.
This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.
View Article and Find Full Text PDFHepatol Int
January 2025
Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Institute of AI for Industries, Chinese Academy of Sciences Nanjing, 168, Tianquan Road, Nanjing 211135, China.
In this study, we designed a biomimetic artificial visual system (AVS) inspired by biological visual system that can process RGB images. Our approach begins by mimicking the photoreceptor cone cells to simulate the initial input processing followed by a learnable dendritic neuron model to replicate ganglion cells that integrate outputs from bipolar and horizontal cell simulations. To handle multi-channel integration, we utilize a nonlearnable dendritic neuron model to simulate the lateral geniculate nucleus (LGN), which consolidates outputs across color channels, an essential function in biological multi-channel processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!