Aims/hypothesis: Due to their ability to regulate various signalling pathways (cytokines, hormones, growth factors), the suppressor of cytokine signalling (SOCS) proteins are thought to be promising therapeutic targets for metabolic and inflammatory disorders. Hence, their role in vivo has to be precisely determined.

Methods: We generated transgenic mice constitutively producing SOCS-3 in skeletal muscle to define whether the sole abundance of SOCS-3 is sufficient to induce metabolic disorders and whether SOCS-3 is implicated in physiological roles distinct from metabolism.

Results: We demonstrate here that chronic expression of SOCS-3 in skeletal muscle leads to overweight in mice and worsening of high-fat diet-induced systemic insulin resistance. Counter-intuitively, insulin sensitivity in muscle of transgenic mice appears to be unaltered. However, following constitutive SOCS-3 production, several genes had deregulated expression, among them other members of the SOCS family. This could maintain the insulin signal into skeletal muscle. Interestingly, we found that SOCS-3 interacts with calcineurin, which has been implicated in muscle contractility. In Socs-3 transgenic muscle, this leads to delocalisation of calcineurin to the fibre periphery. Relevant to this finding, Socs-3 transgenic animals had dilatation of the sarcoplasmic reticulum associated with swollen mitochondria and decreased voluntary activity.

Conclusions/interpretation: Our results show that constitutive SOCS-3 production in skeletal muscle is not in itself sufficient to induce the establishment of metabolic disorders such as diabetes. In contrast, we reveal a novel role of SOCS-3, which appears to be important for muscle integrity and locomotor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-009-1474-9DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
muscle leads
12
socs-3
10
muscle
9
suppressor cytokine
8
overweight mice
8
transgenic mice
8
socs-3 skeletal
8
sufficient induce
8
metabolic disorders
8

Similar Publications

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Image-guided Interventions for Core Muscle Injury and Other Disorders in the Pubic Symphysis.

Radiographics

February 2025

Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).

Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.

View Article and Find Full Text PDF

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.

Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.

Study Design And Methods: Randomized single-blind crossover trial including COPD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!