Enhanced stem cell tracking via electrostatically assembled fluorescent SPION-peptide complexes.

Nanotechnology

Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1074, USA.

Published: September 2009

For cellular MRI there is a need to label cells with superparamagnetic iron oxide nanoparticles (SPION) that have multiple imaging moieties that are nontoxic and have increased NMR relaxation properties to improve the detection and tracking of therapeutic cells. Although increases in the relaxation properties of SPION have been accomplished, detection of tagged cells is limited by either poor cell labeling efficiency or low intracellular iron content. A strategy via a complex formation with transfection agents to overcome these obstacles has been reported. In this paper, we report a complex formation between negatively charged fluorescent monodisperse SPION and positively charged peptides and use the complex formation to improve the MR properties of labeled stem cells. As a result, labeled stem cells exhibited a strong fluorescent signal and enhanced T 2*-weighted MR imaging in vitro and in vivo in a flank tumor model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726975PMC
http://dx.doi.org/10.1088/0957-4484/20/35/355102DOI Listing

Publication Analysis

Top Keywords

complex formation
12
relaxation properties
8
labeled stem
8
stem cells
8
cells
5
enhanced stem
4
stem cell
4
cell tracking
4
tracking electrostatically
4
electrostatically assembled
4

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Metabolic profiling reveals altered amino acid and fatty acid metabolism in children with Williams Syndrome.

Sci Rep

December 2024

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.

Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.

View Article and Find Full Text PDF

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!