AI Article Synopsis

  • The study used PK-PD modeling to assess how the antibiotic gemifloxacin affects brain activity related to seizures in rats.
  • It was found that there is a notable delay between the concentration of the drug in the blood and its effects on EEG readings, which corresponded with observable symptoms like tremors and partial seizures.
  • The results suggest that using a specific PK-PD model helps predict and potentially minimize the risk of seizures linked to gemifloxacin, aiding in safer antibiotic use.

Article Abstract

A pharmacokinetic-pharmacodynamic (PK-PD) modeling approach was used to investigate the epileptogenic activity of gemifloxacin as a representative antibiotic with concentration-dependent antimicrobial activity. Rats received an intravenous infusion of gemifloxacin at a rate of 4 mg kg of body weight(-1) min(-1) over 50 min. Blood samples were collected for drug assay, and an electroencephalogram (EEG) was recorded during infusion and postinfusion. An important delay was observed between concentrations of gemifloxacin in plasma and the EEG effect; this effect was accompanied by tremors and partial seizures. Indirect effect models failed to describe these data, which were successfully fitted by using an effect compartment model with a spline function to describe the relationship between effect and concentration at the effect site. The robustness of the PK-PD model was then assessed by keeping the dose constant but increasing the duration of infusion to 100 and 200 min. Although this was accompanied by PK modifications, PD parameters did not vary significantly, and the PK-PD model still applied. In conclusion, the successful PK-PD modeling of the gemifloxacin EEG effect in rats should be considered to predict and reduce the epileptogenic risk associated with this antibiotic as a representative fluoroquinolone.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21888DOI Listing

Publication Analysis

Top Keywords

pk-pd modeling
8
pk-pd model
8
gemifloxacin
5
convulsant activity
4
activity pharmacokinetic-pharmacodynamic
4
pharmacokinetic-pharmacodynamic modeling
4
modeling electroencephalogram
4
electroencephalogram gemifloxacin
4
gemifloxacin rats
4
rats pharmacokinetic-pharmacodynamic
4

Similar Publications

Population Pharmacokinetics and Pharmacodynamics of Sotalol Following Expedited Intravenous Loading in Patients With Atrial Arrhythmias.

CPT Pharmacometrics Syst Pharmacol

January 2025

Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA.

Sotalol, a class III antiarrhythmic agent, is used to maintain sinus rhythm in patients with atrial fibrillation or atrial flutter (AFIB/AFL). Despite its efficacy, sotalol's use is limited by its potential to cause life-threatening ventricular arrhythmias due to QT interval prolongation. Traditionally, sotalol administration required hospitalization to monitor these risks.

View Article and Find Full Text PDF

Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood (PB) progenitor cells from bone marrow (BM) into circulation for PB stem cell transplantation (PBSCT). This study aimed to develop a population pharmacokinetic-pharmacodynamic (PK-PD) model of filgrastim in healthy subjects to optimize PB CD34 cell collection. Plasma filgrastim concentrations and CD34 cell count data were obtained from a clinical study involving healthy Korean subjects.

View Article and Find Full Text PDF

Purpose: Determining the optimal dosage of norvancomycin (NVCM) for Chinese patients with community-acquired pneumonia (CAP) caused by gram-positive cocci remains uncertain. This research aimed to identify influential factors affecting NVCM pharmacokinetics and explore optimal dosage regimens via population pharmacokinetic (PPK) analysis.

Patients And Methods: A prospective analysis was conducted at the Second Hospital of Hebei Medical University (Shijiazhuang, China).

View Article and Find Full Text PDF

Introduction: Pralurbactam (FL058) is a novel β-lactamase inhibitor with good inhibitory activity on class A, C, and D β-lactamases. This study aimed to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pralurbactam/meropenem in a neutropenic murine thigh infection model.

Methods: After 2-h infection, neutropenic mice was treated with meropenem every 2 h alone or in combination with pralurbactam at different dosing frequencies for 24 h, and the colony count in the thighs was determined before and after treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!