Of the many heat shock proteins (HSPs), hsp70 appears to correlate best with heat resistance, either permanent or transient. We have investigated various approaches to quantify the concentration of hsp70, and examined the relationship between hsp70 and cells' thermal sensitivity during the development and decay of thermotolerance in model systems. Specifically, experiments were performed to determine the possibility of using the rate of synthesis of hsp70 after a second test heat shock to predict the kinetics of thermotolerance in tumor cells in vitro and in animal tumor models. We found that the cells' ability to re-initiate hsp70 synthesis in response to the test heat shock inversely correlated with retained thermotolerance. These data suggest the level of hsp70 in thermotolerant cells regulates the rate of synthesis of additional hsp70 in response to the subsequent heat challenge. Furthermore, the results showed that the rate of re-induction of hsp70 synthesis after a test heat shock can be used as a rapid measure of retained thermotolerance. This study suggests an approach for quantifying the level of retained thermotolerance during fractionated hyperthermia.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02656730902862106DOI Listing

Publication Analysis

Top Keywords

heat shock
16
hsp70 synthesis
12
test heat
12
retained thermotolerance
12
hsp70
9
rate synthesis
8
heat
6
synthesis
5
thermotolerance
5
hyperthermia classic
4

Similar Publications

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

The cellular stress response (CSR) is a conserved mechanism that protects cells from environmental and physiological stressors. The heat shock response (HSR), a critical component of the CSR, utilizes molecular chaperones to mitigate proteotoxic stress caused by elevated temperatures. We hypothesized that while the canonical HSR pathways are conserved across cell types, specific cell lines may exhibit unique transcriptional responses to heat shock.

View Article and Find Full Text PDF

The increasing frequency of heat stress events due to climate change disrupts all stages of plant growth, significantly reducing yields, especially in crops like mung bean (Vigna radiata (L.) R. Wilczek).

View Article and Find Full Text PDF

Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis.

Nat Commun

January 2025

The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.

Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.

View Article and Find Full Text PDF

The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!