Aims/hypothesis: The proximity of endothelial cells and beta cells in islets by necessity means that they are exposed to each other's products. Whereas islet endothelial cells require signals from beta cells to function properly, endothelin-1, thrombospondin-1 and laminins, among others, have been identified as endothelial-derived molecules, although their full effects on beta cells have not been explored. We tested the hypothesis that islet endothelial-derived products affect beta cell function.
Methods: Endothelial cells from rat islets were proliferated and purified. Endothelium-conditioned culture medium (ECCM) was obtained by maintaining the endothelial cells in culture medium. Islet function was evaluated following exposure of cultured islets to standard culture medium or ECCM. Changes in mRNA levels for key beta cell metabolic enzymes were also measured in islets after ECCM exposure.
Results: Glucose-stimulated insulin release and islet insulin content were markedly enhanced by exposure to ECCM. This was at least partly explained by improved mitochondrial function, as assessed by glucose oxidation and an upregulation of the mitochondrial gene for glycerol-3-phosphate dehydrogenase (mGpdh [also known as Gpd2]), combined with upregulation of the rate-limiting enzyme in the glycolysis, glucokinase, in the islets. The intracellular degradation of insulin was also decreased in the islets. Islet endothelial cells produced laminins, and the positive effects of islet endothelial cells were prevented by addition of a neutralising antibody to the beta1-chain of laminin. Addition of exogenous laminin stimulated islet function.
Conclusions/interpretation: This study provides proof of principle that endothelial cells can affect the function of beta cells in their vicinity and that this is at least partially mediated by laminins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00125-009-1485-6 | DOI Listing |
Stem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFJCI Insight
January 2025
Division of Nephrology, Department of Medicine, Vanderbildt University Medical Center, Nashville, United States of America.
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.
Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.
Lab Chip
January 2025
Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France.
is frequently isolated during prosthetic joint infections (PJIs). Unlike , its internalization and persistence within cells are controversial. We aimed to determine whether internalization is involved in the pathophysiology of PJIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!